Suppr超能文献

背散射回波的短时滞空间相干性:成像特征。

Short-lag spatial coherence of backscattered echoes: imaging characteristics.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1377-88. doi: 10.1109/TUFFC.2011.1957.

Abstract

Conventional ultrasound images are formed by delay-and-sum beamforming of the backscattered echoes received by individual elements of the transducer aperture. Although the delay-and-sum beamformer is well suited for ultrasound image formation, it is corrupted by speckle noise and challenged by acoustic clutter and phase aberration. We propose an alternative method of imaging utilizing the short-lag spatial coherence (SLSC) of the backscattered echoes. Compared with matched B-mode images, SLSC images demonstrate superior SNR and contrast-to-noise ratio in simulated and experimental speckle-generating phantom targets, but are shown to be challenged by limited point target conspicuity. Matched B-mode and SLSC images of a human thyroid are presented. The challenges and opportunities of real-time implementation of SLSC imaging are discussed.

摘要

传统的超声图像是通过对换能器孔径中各个单元接收到的背散射回波进行延迟求和波束形成得到的。虽然延迟求和波束形成器非常适合超声成像,但它会受到散斑噪声的干扰,并且受到声杂波和相位误差的影响。我们提出了一种利用背散射回波的短滞后空间相干性(SLSC)的成像方法。与匹配的 B 型模式图像相比,SLSC 图像在模拟和实验的散斑生成体模目标中表现出更高的 SNR 和对比度噪声比,但在有限的点目标可见度方面受到挑战。本文展示了人甲状腺的匹配 B 型模式和 SLSC 图像。讨论了实时实现 SLSC 成像的挑战和机遇。

相似文献

1
Short-lag spatial coherence of backscattered echoes: imaging characteristics.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1377-88. doi: 10.1109/TUFFC.2011.1957.
2
Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
Ultrason Imaging. 2017 Jul;39(4):224-239. doi: 10.1177/0161734616688328. Epub 2017 Jan 9.
3
Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1265-76. doi: 10.1109/TUFFC.2014.006909.
4
Robust Short-Lag Spatial Coherence Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Mar;65(3):366-377. doi: 10.1109/TUFFC.2017.2780084.
5
Synthetic aperture focusing for short-lag spatial coherence imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Sep;60(9):1816-26. doi: 10.1109/TUFFC.2013.2768.
6
In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
Ultrason Imaging. 2015 Apr;37(2):101-16. doi: 10.1177/0161734614547281. Epub 2014 Aug 12.
7
Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
Ultrason Imaging. 2011 Apr;33(2):119-33. doi: 10.1177/016173461103300203.
8
Improved Sensitivity in Ultrasound Molecular Imaging With Coherence-Based Beamforming.
IEEE Trans Med Imaging. 2018 Jan;37(1):241-250. doi: 10.1109/TMI.2017.2774814.
9
Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
Biomed Eng Online. 2019 Apr 23;18(1):48. doi: 10.1186/s12938-019-0671-0.
10
Short-lag spatial coherence combined with eigenspace-based minimum variance beamformer for synthetic aperture ultrasound imaging.
Comput Biol Med. 2017 Dec 1;91:267-276. doi: 10.1016/j.compbiomed.2017.10.016. Epub 2017 Oct 28.

引用本文的文献

2
Comparative Assessment of Real-Time and Offline Short-Lag Spatial Coherence Imaging of Ultrasound Breast Masses.
Ultrasound Med Biol. 2025 Jun;51(6):941-950. doi: 10.1016/j.ultrasmedbio.2025.01.017. Epub 2025 Mar 11.
3
Overfit detection method for deep neural networks trained to beamform ultrasound images.
Ultrasonics. 2025 Apr;148:107562. doi: 10.1016/j.ultras.2024.107562. Epub 2024 Dec 27.
5
Deep tissue photoacoustic imaging with light and sound.
Npj Imaging. 2024;2(1):44. doi: 10.1038/s44303-024-00048-w. Epub 2024 Nov 6.
6
Micron-scale imaging using bulk ultrasonics.
Sci Rep. 2024 Oct 18;14(1):24434. doi: 10.1038/s41598-024-72634-2.
7
In Vivo Cavitation-Based Aberration Correction of Histotripsy in Porcine Liver.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Aug;71(8):1019-1029. doi: 10.1109/TUFFC.2024.3409638. Epub 2024 Aug 19.
9
Mitigating skin tone bias in linear array photoacoustic imaging with short-lag spatial coherence beamforming.
Photoacoustics. 2023 Sep 11;33:100555. doi: 10.1016/j.pacs.2023.100555. eCollection 2023 Oct.
10
Spatial Coherence Approaches to Distinguish Suspicious Mass Contents in Fundamental and Harmonic Breast Ultrasound Images.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jan;71(1):70-84. doi: 10.1109/TUFFC.2023.3332207. Epub 2024 Jan 9.

本文引用的文献

1
A motion-based approach to abdominal clutter reduction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Nov;56(11):2437-49. doi: 10.1109/TUFFc.2009.1331.
2
Phase coherence imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):958-74. doi: 10.1109/TUFFC.2009.1128.
3
Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study.
Ultrasound Med Biol. 2009 May;35(5):707-16. doi: 10.1016/j.ultrasmedbio.2008.11.001. Epub 2009 Feb 25.
4
Quantitative assessment of the magnitude, impact and spatial extent of ultrasonic clutter.
Ultrason Imaging. 2008 Jul;30(3):151-68. doi: 10.1177/016173460803000302.
5
The application of k-space in pulse echo ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(3):541-58. doi: 10.1109/58.677599.
6
An ultrasound research interface for a clinical system.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Jan;54(1):198-210. doi: 10.1109/tuffc.2007.226.
7
Stationary clutter rejection in echocardiography.
Ultrasound Med Biol. 2006 Jan;32(1):43-52. doi: 10.1016/j.ultrasmedbio.2005.08.012.
8
Spatial and temporal aberrator stability for real-time adaptive imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Sep;52(9):1504-17. doi: 10.1109/tuffc.2005.1516023.
9
Time-delay- and time-reversal-based robust Capon beamformers for ultrasound imaging.
IEEE Trans Med Imaging. 2005 Oct;24(10):1308-22. doi: 10.1109/TMI.2005.857222.
10
Adaptive imaging and spatial compounding in the presence of aberration.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jul;52(7):1131-44. doi: 10.1109/tuffc.2005.1503999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验