Suppr超能文献

基于像素差值的微笑检测。

Smile detection by boosting pixel differences.

出版信息

IEEE Trans Image Process. 2012 Jan;21(1):431-6. doi: 10.1109/TIP.2011.2161587. Epub 2011 Jul 14.

Abstract

Smile detection in face images captured in unconstrained real-world scenarios is an interesting problem with many potential applications. This paper presents an efficient approach to smile detection, in which the intensity differences between pixels in the grayscale face images are used as features. We adopt AdaBoost to choose and combine weak classifiers based on intensity differences to form a strong classifier. Experiments show that our approach has similar accuracy to the state-of-the-art method but is significantly faster. Our approach provides 85% accuracy by examining 20 pairs of pixels and 88% accuracy with 100 pairs of pixels. We match the accuracy of the Gabor-feature-based support vector machine using as few as 350 pairs of pixels.

摘要

在非约束性真实场景中捕获的人脸图像中的微笑检测是一个有趣的问题,具有许多潜在的应用。本文提出了一种有效的微笑检测方法,该方法使用灰度人脸图像中像素之间的强度差异作为特征。我们采用 AdaBoost 选择和组合基于强度差异的弱分类器,以形成强分类器。实验表明,我们的方法与最先进的方法具有相似的准确性,但速度明显更快。我们的方法通过检查 20 对像素可以达到 85%的准确率,通过检查 100 对像素可以达到 88%的准确率。我们使用的像素对数量与基于 Gabor 特征的支持向量机的数量相同,为 350 对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验