Suppr超能文献

通过多模型贝叶斯分析从量热数据估算蛋白质折叠自由能势垒。

Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis.

机构信息

Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain.

出版信息

Phys Chem Chem Phys. 2011 Oct 14;13(38):17064-76. doi: 10.1039/c1cp20156e. Epub 2011 Jul 19.

Abstract

The realization that folding free energy barriers can be small enough to result in significant population of the species at the barrier top has sprouted in several methods to estimate folding barriers from equilibrium experiments. Some of these approaches are based on fitting the experimental thermogram measured by differential scanning calorimetry (DSC) to a one-dimensional representation of the folding free-energy surface (FES). Different physical models have been used to represent the FES: (1) a Landau quartic polynomial as a function of the total enthalpy, which acts as an order parameter; (2) the projection onto a structural order parameter (i.e. number of native residues or native contacts) of the free energy of all the conformations generated by Ising-like statistical mechanical models; and (3) mean-field models that define conformational entropy and stabilization energy as functions of a continuous local order parameter. The fundamental question that emerges is how can we obtain robust, model-independent estimates of the thermodynamic folding barrier from the analysis of DSC experiments. Here we address this issue by comparing the performance of various FES models in interpreting the thermogram of a protein with a marginal folding barrier. We chose the small α-helical protein PDD, which folds-unfolds in microseconds crossing a free energy barrier previously estimated as ~1 RT. The fits of the PDD thermogram to the various models and assumptions produce FES with a consistently small free energy barrier separating the folded and unfolded ensembles. However, the fits vary in quality as well as in the estimated barrier. Applying Bayesian probabilistic analysis we rank the fit performance using a statistically rigorous criterion that leads to a global estimate of the folding barrier and its precision, which for PDD is 1.3 ± 0.4 kJ mol(-1). This result confirms that PDD folds over a minor barrier consistent with the downhill folding regime. We have further validated the multi-model Bayesian approach through the analysis of two additional protein systems: gpW, a midsize single-domain with α + β topology that also folds in microseconds and has been previously catalogued as a downhill folder, and α-spectrin SH3, a domain of similar size but with a β-barrel fold, slow-folding kinetics and two-state-like thermodynamics. From a general viewpoint, the Bayesian analysis developed here results in a statistically robust, virtually model-independent, method to estimate the thermodynamic free-energy barriers to protein folding from DSC thermograms. Our method appears to be sufficiently accurate to consistently detect small differences in the barrier height, and thus opens up the possibility of characterizing experimentally the changes in thermodynamic folding barriers induced by single-point mutations on proteins within the downhill regime.

摘要

人们已经意识到,折叠自由能垒可以小到足以导致在垒顶处有大量的物种存在,这一认识促使人们从平衡实验中提出了几种估计折叠能垒的方法。这些方法中的一些是基于将通过差示扫描量热法(DSC)测量的实验热谱拟合到折叠自由能面(FES)的一维表示。不同的物理模型已被用于表示 FES:(1)作为总焓的函数的 Landau 四次多项式,作为序参数;(2)通过伊辛类统计力学模型生成的所有构象的自由能投影到结构序参数(即天然残基或天然接触的数量);(3)将构象熵和稳定能定义为连续局部序参数的函数的平均场模型。出现的基本问题是,我们如何能够从 DSC 实验的分析中获得稳健的、独立于模型的热力学折叠能垒的估计。在这里,我们通过比较各种 FES 模型在解释具有边缘折叠能垒的蛋白质的热谱方面的性能来解决这个问题。我们选择了小的α-螺旋蛋白 PDD,它在跨越先前估计为~1 RT 的自由能垒时在微秒内折叠-展开。将 PDD 热谱拟合到各种模型和假设中,产生了具有一致小的自由能垒的 FES,将折叠和未折叠的集合分开。然而,拟合的质量和估计的屏障各不相同。应用贝叶斯概率分析,我们使用严格的统计标准对拟合性能进行排名,从而得出折叠能垒及其精度的全局估计,对于 PDD,其精度为 1.3 ± 0.4 kJ mol(-1)。这一结果证实了 PDD 在一个小的能垒上折叠,这与下坡折叠状态一致。我们通过对另外两个蛋白质系统:gpW 和 α- spectrin SH3 的分析,进一步验证了多模型贝叶斯方法。gpW 是一个具有α+β拓扑的中尺度单域,也在微秒内折叠,并且之前被列为下坡折叠蛋白,而α- spectrin SH3 是一个大小相似但具有β-桶折叠、慢折叠动力学和两态热力学的结构域。从一般的角度来看,这里开发的贝叶斯分析产生了一种从 DSC 热谱中估计蛋白质折叠热力学自由能垒的统计上稳健的、实际上独立于模型的方法。我们的方法似乎足够准确,可以一致地检测到垒高的微小差异,因此为在 downhill 范围内通过单点突变对蛋白质的热力学折叠能垒进行实验表征开辟了可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验