Suppr超能文献

人谷胱甘肽合成酶的 458 位天冬氨酸对于协同作用和活性部位结构很重要。

Aspartate 458 of human glutathione synthetase is important for cooperativity and active site structure.

机构信息

Department of Chemistry and Physics, Texas Woman's University, Denton, TX 76204, United States.

出版信息

Biochem Biophys Res Commun. 2011 Aug 5;411(3):536-42. doi: 10.1016/j.bbrc.2011.06.166. Epub 2011 Jul 12.

Abstract

Human glutathione synthetase (hGS) catalyzes the second ATP-dependent step in the biosynthesis of glutathione (GSH) and is negatively cooperative to the γ-glutamyl substrate. The hGS active site is composed of three highly conserved catalytic loops, notably the alanine rich A-loop. Experimental and computational investigations of the impact of mutation of Asp458 are reported, and thus the role of this A-loop residue on hGS structure, activity, negativity cooperativity and stability is defined. Several Asp458 hGS mutants (D458A, D458N and D458R) were constructed using site-directed mutagenesis and their activities determined (10%, 15% and 7% of wild-type hGS, respectively). The Michaelis-Menten constant (K(m)) was determined for all three substrates (glycine, GAB and ATP): glycine K(m) increased by 30-115-fold, GAB K(m) decreased by 8-17-fold, and the ATP K(m) was unchanged. All Asp458 mutants display a change in cooperativity from negative cooperativity to non-cooperative. All mutants show similar stability as compared to wild-type hGS, as determined by differential scanning calorimetry. The findings indicate that Asp458 is essential for hGS catalysis and that it impacts the allostery of hGS.

摘要

人谷胱甘肽合成酶 (hGS) 催化谷胱甘肽 (GSH) 生物合成的第二个依赖 ATP 的步骤,对 γ-谷氨酰基底物呈负协同性。hGS 活性位点由三个高度保守的催化环组成,特别是富含丙氨酸的 A 环。报道了对突变天冬氨酸 458 影响的实验和计算研究,从而定义了该 A 环残基对 hGS 结构、活性、负协同性和稳定性的作用。使用定点突变构建了几种 hGS 突变体 (D458A、D458N 和 D458R),并测定了它们的活性 (分别为野生型 hGS 的 10%、15%和 7%)。确定了所有三种底物 (甘氨酸、GAB 和 ATP) 的米氏常数 (K(m)):甘氨酸 K(m)增加了 30-115 倍,GAB K(m)减少了 8-17 倍,而 ATP K(m)不变。所有 Asp458 突变体的协同性均从负协同性变为非协同性。与野生型 hGS 相比,所有突变体的稳定性相似,这是通过差示扫描量热法确定的。研究结果表明,Asp458 对 hGS 催化至关重要,并且影响 hGS 的变构作用。

相似文献

1
Aspartate 458 of human glutathione synthetase is important for cooperativity and active site structure.
Biochem Biophys Res Commun. 2011 Aug 5;411(3):536-42. doi: 10.1016/j.bbrc.2011.06.166. Epub 2011 Jul 12.
2
Valine 44 and valine 45 of human glutathione synthetase are key for subunit stability and negative cooperativity.
Biochem Biophys Res Commun. 2011 Jul 8;410(3):597-601. doi: 10.1016/j.bbrc.2011.06.034. Epub 2011 Jun 12.
3
The role of the glycine triad in human glutathione synthetase.
Biochem Biophys Res Commun. 2010 Oct 1;400(4):511-6. doi: 10.1016/j.bbrc.2010.08.081. Epub 2010 Aug 26.
4
Structural basis for evolution of product diversity in soybean glutathione biosynthesis.
Plant Cell. 2009 Nov;21(11):3450-8. doi: 10.1105/tpc.109.071183. Epub 2009 Nov 30.
5
Catalytic loop motion in human glutathione synthetase: A molecular modeling approach.
Biochem Biophys Res Commun. 2007 Feb 9;353(2):450-6. doi: 10.1016/j.bbrc.2006.12.050. Epub 2006 Dec 18.
6
Cooperative binding of gamma-glutamyl substrate to human glutathione synthetase.
Biochem Biophys Res Commun. 2001 Nov 23;289(1):80-4. doi: 10.1006/bbrc.2001.5961.
7
Genetic Mutations in the S-loop of Human Glutathione Synthetase: Links Between Substrate Binding, Active Site Structure and Allostery.
Comput Struct Biotechnol J. 2018 Nov 29;17:31-38. doi: 10.1016/j.csbj.2018.11.008. eCollection 2019.
8
Reaction mechanism of glutathione synthetase from Arabidopsis thaliana: site-directed mutagenesis of active site residues.
J Biol Chem. 2007 Jun 8;282(23):17157-65. doi: 10.1074/jbc.M700804200. Epub 2007 Apr 22.

引用本文的文献

1
Genetic Mutations in the S-loop of Human Glutathione Synthetase: Links Between Substrate Binding, Active Site Structure and Allostery.
Comput Struct Biotechnol J. 2018 Nov 29;17:31-38. doi: 10.1016/j.csbj.2018.11.008. eCollection 2019.
4
Emerging regulatory paradigms in glutathione metabolism.
Adv Cancer Res. 2014;122:69-101. doi: 10.1016/B978-0-12-420117-0.00002-5.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
The role of the glycine triad in human glutathione synthetase.
Biochem Biophys Res Commun. 2010 Oct 1;400(4):511-6. doi: 10.1016/j.bbrc.2010.08.081. Epub 2010 Aug 26.
3
Q&A: Cooperativity.
J Biol. 2009;8(6):53. doi: 10.1186/jbiol157. Epub 2009 Jun 16.
4
An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors.
J Biol Chem. 2008 Feb 29;283(9):5355-63. doi: 10.1074/jbc.M707054200. Epub 2007 Dec 3.
5
Catalytic loop motion in human glutathione synthetase: A molecular modeling approach.
Biochem Biophys Res Commun. 2007 Feb 9;353(2):450-6. doi: 10.1016/j.bbrc.2006.12.050. Epub 2006 Dec 18.
6
Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption.
J Biol Chem. 2006 Jun 16;281(24):16768-76. doi: 10.1074/jbc.M601876200. Epub 2006 Apr 11.
7
GROMACS: fast, flexible, and free.
J Comput Chem. 2005 Dec;26(16):1701-18. doi: 10.1002/jcc.20291.
8
Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana.
J Biol Chem. 2004 Oct 8;279(41):42726-31. doi: 10.1074/jbc.M407961200. Epub 2004 Aug 9.
9
Function of conserved residues of human glutathione synthetase: implications for the ATP-grasp enzymes.
J Biol Chem. 2004 May 21;279(21):22412-21. doi: 10.1074/jbc.M401334200. Epub 2004 Feb 27.
10
Proteomics and models for enzyme cooperativity.
J Biol Chem. 2002 Dec 6;277(49):46841-4. doi: 10.1074/jbc.R200014200. Epub 2002 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验