Institute of Neurophysiology, University Medicine Charité Berlin, Germany.
Front Cell Neurosci. 2011 Jul 4;5:13. doi: 10.3389/fncel.2011.00013. eCollection 2011.
Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett's syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: (1) synaptic transmission starts with GABA, (2) nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release), (3) immature synaptic terminals release vesicles with higher probability than mature synapses, (4) immature GABAergic synapses are prone to paired pulse and tetanic depression, (5) synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, (6) in immature neurons GABA acts as a depolarizing transmitter, (7) synapse maturation implies inhibitory postsynaptic current shortening due to an increase in alpha1 subunit expression, (8) extrasynaptic (tonic) conductances can inhibit the development of synaptic (phasic) GABA actions.
成人大脑的功能障碍可能是由于 GABA 能突触传递的个体发育缺陷所致。自闭症谱系障碍、雷特氏综合征或某些形式的癫痫的基因缺陷,以及伴随围产期创伤、激素失衡、睡眠诱导或情绪改善药物摄入或相当常见的怀孕期间饮酒的各种综合征,都可能在生命早期改变 GABA 信号。寻找具有治疗相关性的内源性分子或外源性化合物,以减轻 GABA 能传递在胚胎或出生后大脑中的功能障碍的后果,需要清楚地了解其位置和状态依赖性的发育。在单个突触水平上,有必要区分突触前和突触后改变,并定义可被视为适合和可用于量化发育变化的参数。在这里,我们重点介绍两个脑区(海马体和上丘)中 GABA 能突触的性能,描述了神经营养因子在 GABA 能突触传递发育过程中的一些新作用,并检查以下规则的适用性:(1)突触传递始于 GABA;(2)新生/不成熟的 GABA 能突触以弹道模式(多泡释放)运作;(3)不成熟的突触末梢释放具有更高概率的囊泡比成熟突触;(4)不成熟的 GABA 能突触易受成对脉冲和强直抑制;(5)突触成熟的特征是同步释放相对于异步释放的优势增加;(6)在不成熟的神经元中,GABA 作为去极化递质起作用;(7)突触成熟意味着由于 alpha1 亚基表达增加,抑制性突触后电流缩短;(8)突触外(紧张)电导可抑制突触(相)GABA 作用的发展。