Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Neuropharmacology. 2018 Jan;128:324-339. doi: 10.1016/j.neuropharm.2017.10.022. Epub 2017 Oct 23.
γ-aminobutyric acid (GABA) begins as the key excitatory neurotransmitter in newly forming circuits, with chloride efflux from GABA type A receptors (GABARs) producing membrane depolarization, which promotes calcium entry, dendritic outgrowth and synaptogenesis. As development proceeds, GABAergic signaling switches to inhibitory hyperpolarizing neurotransmission. Despite the evidence of impaired GABAergic neurotransmission in neurodevelopmental disorders, little is understood on how agonist-dependent GABAR activation controls the formation and plasticity of GABAergic synapses. We have identified a weakly depolarizing and inhibitory GABAR response in cortical neurons that occurs during the transition period from GABAR depolarizing excitation to hyperpolarizing inhibitory activity. We show here that treatment with the GABAR agonist muscimol mediates structural changes that diminish GABAergic synapse strength through postsynaptic and presynaptic plasticity via intracellular Ca stores, ERK and BDNF/TrkB signaling. Muscimol decreases synaptic localization of surface γ2 GABARs and gephyrin postsynaptic scaffold while β2/3 non-γ2 GABARs accumulate in the synapse. Concurrent with this structural plasticity, muscimol treatment decreases synaptic currents while enhancing the γ2 containing benzodiazepine sensitive GABAR tonic current in an ERK dependent manner. We further demonstrate that GABAR activation leads to a decrease in presynaptic GAD65 levels via BDNF/TrkB signaling. Together these data reveal a novel mechanism for agonist induced GABAergic synapse plasticity that can occur on the timescale of minutes, contributing to rapid modification of synaptic and circuit function.
γ-氨基丁酸(GABA)最初作为新形成回路中的关键兴奋性神经递质,通过 GABA 型 A 受体(GABAR)氯离子外流产生膜去极化,促进钙内流、树突生长和突触形成。随着发育的进行,GABA 能信号传递转变为抑制性超极化神经传递。尽管神经发育障碍中存在 GABA 能神经传递受损的证据,但对于激动剂依赖性 GABAR 激活如何控制 GABA 能突触的形成和可塑性知之甚少。我们在皮质神经元中发现了一种在从 GABAR 去极化兴奋向超极化抑制活性转变期间发生的、具有轻微去极化和抑制作用的 GABAR 反应。我们在这里表明,用 GABAR 激动剂 muscimol 处理可通过细胞内 Ca 库、ERK 和 BDNF/TrkB 信号传导介导结构变化,通过突触后和突触前可塑性来减弱 GABA 能突触强度。Muscimol 减少了 GABA 能突触的表面 γ2 GABAR 和 gephyrin 突触后支架的定位,而 β2/3 非 γ2 GABAR 则在突触中积累。与这种结构可塑性同时发生的是,Muscimol 处理以依赖 ERK 的方式降低了突触电流,同时增强了包含 γ2 的苯二氮䓬敏感的 GABAR 紧张电流。我们进一步证明,GABAR 激活通过 BDNF/TrkB 信号导致突触前 GAD65 水平降低。这些数据共同揭示了一种新型的激动剂诱导 GABA 能突触可塑性机制,该机制可在数分钟的时间尺度上发生,有助于快速改变突触和电路功能。