Department of Statistics, Colorado State University, Fort Collins, Colorado 80523, USA.
Ecol Appl. 2011 Jun;21(4):1173-88. doi: 10.1890/09-1549.1.
Ecological spatial data often come from multiple sources, varying in extent and accuracy. We describe a general approach to reconciling such data sets through the use of the Bayesian hierarchical framework. This approach provides a way for the data sets to borrow strength from one another while allowing for inference on the underlying ecological process. We apply this approach to study the incidence of eastern spruce dwarf mistletoe (Arceuthobium pusillum) in Minnesota black spruce (Picea mariana). A Minnesota Department of Natural Resources operational inventory of black spruce stands in northern Minnesota found mistletoe in 11% of surveyed stands, while a small, specific-pest survey found mistletoe in 56% of the surveyed stands. We reconcile these two surveys within a Bayesian hierarchical framework and predict that 35-59% of black spruce stands in northern Minnesota are infested with dwarf mistletoe.
生态空间数据通常来自多个来源,其范围和准确性各不相同。我们通过使用贝叶斯层次框架描述了一种协调此类数据集的通用方法。该方法允许数据集相互借鉴优势,同时可以对潜在的生态过程进行推断。我们应用这种方法来研究明尼苏达州黑云杉(Picea mariana)中东部云杉矮槲寄生(Arceuthobium pusillum)的发病率。明尼苏达州自然资源部对明尼苏达州北部黑云杉林的一项运营性清查发现,在所调查的林分中,11%的林分中有槲寄生,而一项小型的特定害虫调查发现,在所调查的林分中有 56%的林分中有槲寄生。我们在贝叶斯层次框架内协调这两项调查,并预测明尼苏达州北部 35-59%的黑云杉林分受到矮槲寄生的侵害。