Suppr超能文献

当出现误报时确定发生动态:根据公众调查数据估计狼的种群动态范围

Determining Occurrence Dynamics when False Positives Occur: Estimating the Range Dynamics of Wolves from Public Survey Data.

作者信息

Miller David A W, Nichols James D, Gude Justin A, Rich Lindsey N, Podruzny Kevin M, Hines James E, Mitchell Michael S

机构信息

United States Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, United States of America ; Pennsylvania State University, Department of Ecosystem Science and Management, University Park, Pennsylvania, United States of America.

出版信息

PLoS One. 2013 Jun 19;8(6):e65808. doi: 10.1371/journal.pone.0065808. Print 2013.

Abstract

Large-scale presence-absence monitoring programs have great promise for many conservation applications. Their value can be limited by potential incorrect inferences owing to observational errors, especially when data are collected by the public. To combat this, previous analytical methods have focused on addressing non-detection from public survey data. Misclassification errors have received less attention but are also likely to be a common component of public surveys, as well as many other data types. We derive estimators for dynamic occupancy parameters (extinction and colonization), focusing on the case where certainty can be assumed for a subset of detections. We demonstrate how to simultaneously account for non-detection (false negatives) and misclassification (false positives) when estimating occurrence parameters for gray wolves in northern Montana from 2007-2010. Our primary data source for the analysis was observations by deer and elk hunters, reported as part of the state's annual hunter survey. This data was supplemented with data from known locations of radio-collared wolves. We found that occupancy was relatively stable during the years of the study and wolves were largely restricted to the highest quality habitats in the study area. Transitions in the occupancy status of sites were rare, as occupied sites almost always remained occupied and unoccupied sites remained unoccupied. Failing to account for false positives led to over estimation of both the area inhabited by wolves and the frequency of turnover. The ability to properly account for both false negatives and false positives is an important step to improve inferences for conservation from large-scale public surveys. The approach we propose will improve our understanding of the status of wolf populations and is relevant to many other data types where false positives are a component of observations.

摘要

大规模的存在-缺失监测计划在许多保护应用中具有巨大潜力。由于观测误差,其价值可能会受到潜在错误推断的限制,尤其是当数据由公众收集时。为了解决这个问题,以往的分析方法主要集中于处理公众调查数据中的未检测到情况。错误分类误差受到的关注较少,但也可能是公众调查以及许多其他数据类型的常见组成部分。我们推导了动态占有率参数(灭绝和定殖)的估计量,重点关注可以假定对一部分检测结果具有确定性的情况。我们展示了在估计2007 - 2010年蒙大拿州北部灰狼的出现参数时,如何同时考虑未检测到(假阴性)和错误分类(假阳性)情况。我们分析的主要数据源是鹿和麋鹿猎人的观察结果,这些结果作为该州年度猎人调查的一部分进行报告。该数据辅以来自无线电追踪狼的已知位置的数据。我们发现,在研究期间占有率相对稳定,并且狼主要局限于研究区域内质量最高的栖息地。地点占有率状态的转变很少见,因为已占据的地点几乎总是保持被占据状态,未占据的地点也保持未被占据状态。未考虑假阳性会导致对狼所栖息区域和周转率的频率都估计过高。正确考虑假阴性和假阳性的能力是改进从大规模公众调查中得出的保护推断的重要一步。我们提出的方法将增进我们对狼种群状况的理解,并且与许多其他存在假阳性作为观测组成部分的数据类型相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/025b/3686827/414165a148e4/pone.0065808.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验