Suppr超能文献

为了预测区域尺度的人口动态,我们必须理解哪些过程?

What processes must we understand to forecast regional-scale population dynamics?

机构信息

Department of Biology, Pennsylvania State University, University Park, PA, USA.

U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO, USA.

出版信息

Proc Biol Sci. 2020 Dec 9;287(1940):20202219. doi: 10.1098/rspb.2020.2219.

Abstract

An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.

摘要

生物学家面临的一个紧迫挑战是预测面临环境变化的物种的区域尺度种群动态。生物学家认为,我们必须超越基于现象学模型的预测,而是基于潜在过程进行预测。例如,种群生物学家、进化生物学家、群落生态学家和生理生态学家都认为他们所研究的过程是必不可少的。我们的模型是否必须包含来自所有这些领域的过程?我们认为,回答这个关键问题最终是一个需要大量数据的经验性练习,而迄今为止,还没有为任何系统整合这些数据。为了激发和促进必要的数据收集和整合,我们首先回顾了每种机制在熟练预测方面的潜在重要性。然后,我们基于反应规范建立了一个概念框架,并提出了一个层次贝叶斯统计框架,以整合不同尺度上影响反应规范的过程。由于新的合作、数据集和分析工具,我们所倡导的雄心勃勃的研究计划正在迅速成为可能。

相似文献

2
Climate change and species interactions: beyond local communities.气候变化和物种相互作用:超越本地社区。
Ann N Y Acad Sci. 2013 Sep;1297:98-111. doi: 10.1111/nyas.12149. Epub 2013 Jun 10.
3
Cracking the Code of Biodiversity Responses to Past Climate Change.破解生物多样性对过去气候变化响应的密码。
Trends Ecol Evol. 2018 Oct;33(10):765-776. doi: 10.1016/j.tree.2018.07.005. Epub 2018 Aug 30.
4
Local adaptation and the evolution of species' ranges under climate change.本地适应和气候变化下物种分布范围的进化。
J Theor Biol. 2010 Oct 7;266(3):449-57. doi: 10.1016/j.jtbi.2010.07.014. Epub 2010 Jul 21.
8
Eco-evolutionary dynamics.生态进化动力学
Philos Trans R Soc Lond B Biol Sci. 2009 Jun 12;364(1523):1483-9. doi: 10.1098/rstb.2009.0027.

引用本文的文献

本文引用的文献

4
Statistical Implementations of Agent-Based Demographic Models.基于主体的人口模型的统计实现
Int Stat Rev. 2020 Aug;88(2):441-461. doi: 10.1111/insr.12399. Epub 2020 Aug 3.
5
The emergent interactions that govern biodiversity change.控制生物多样性变化的紧急相互作用。
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17074-17083. doi: 10.1073/pnas.2003852117. Epub 2020 Jul 6.
8
Microbiome composition shapes rapid genomic adaptation of .微生物组组成塑造了. 的快速基因组适应。
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20025-20032. doi: 10.1073/pnas.1907787116. Epub 2019 Sep 16.
10
Eco-evolutionary community turnover following environmental change.环境变化后的生态进化群落更替
Evol Appl. 2019 Feb 20;12(7):1434-1448. doi: 10.1111/eva.12776. eCollection 2019 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验