Suppr超能文献

小分子的亚细胞分布:一项荟萃分析。

The subcellular distribution of small molecules: a meta-analysis.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

Mol Pharm. 2011 Oct 3;8(5):1611-8. doi: 10.1021/mp200093z. Epub 2011 Aug 17.

Abstract

To explore the extent to which current knowledge about the organelle-targeting features of small molecules may be applicable toward controlling the accumulation and distribution of exogenous chemical agents inside cells, molecules with known subcellular localization properties (as reported in the scientific literature) were compiled into a single data set. This data set was compared to a reference data set of approved drug molecules derived from the DrugBank database, and to a reference data set of random organic molecules derived from the PubChem database. Cheminformatic analysis revealed that molecules with reported subcellular localizations were comparably diverse. However, the calculated physicochemical properties of molecules reported to accumulate in different organelles were markedly overlapping. In relation to the reference sets of DrugBank and PubChem molecules, molecules with reported subcellular localizations were biased toward larger, more complex chemical structures possessing multiple ionizable functional groups and higher lipophilicity. Stratifying molecules based on molecular weight revealed that many physicochemical properties' trends associated with specific organelles were reversed in smaller vs larger molecules. Most likely, these reversed trends are due to the different transport mechanisms determining the subcellular localization of molecules of different sizes. Molecular weight can be dramatically altered by tagging molecules with fluorophores or by incorporating organelle targeting motifs. Generally, in order to better exploit structure-localization relationships, subcellular targeting strategies would benefit from analysis of the biodistribution effects resulting from variations in the size of the molecules.

摘要

为了探究当前关于小分子细胞器靶向特征的知识在多大程度上可以用于控制细胞内外源性化学物质的积累和分布,我们将具有已知亚细胞定位特性的分子(如文献中报道的)编译成一个单一的数据集。将该数据集与源自 DrugBank 数据库的已批准药物分子的参考数据集以及源自 PubChem 数据库的随机有机分子的参考数据集进行比较。化学信息学分析表明,具有报道的亚细胞定位的分子具有相当大的多样性。然而,在不同细胞器中积累的分子的计算物理化学性质明显重叠。与 DrugBank 和 PubChem 分子的参考集相比,具有报道的亚细胞定位的分子偏向于具有多个可离子化官能团和较高亲脂性的更大、更复杂的化学结构。基于分子量对分子进行分层,揭示了与特定细胞器相关的许多物理化学性质趋势在小分子与大分子之间发生了逆转。很可能,这些逆转的趋势是由于不同的运输机制决定了不同大小的分子的亚细胞定位。通过用荧光团标记分子或通过掺入细胞器靶向基序,分子的分子量可以显著改变。一般来说,为了更好地利用结构-定位关系,亚细胞靶向策略将受益于分析由于分子大小变化导致的生物分布效应。

相似文献

引用本文的文献

4
Labeling Preferences of Diazirines with Protein Biomolecules.带标记的重氮化合物与蛋白质生物分子的标记偏好。
J Am Chem Soc. 2021 May 5;143(17):6691-6700. doi: 10.1021/jacs.1c02509. Epub 2021 Apr 20.
7
Nanoscale chemical imaging using tip-enhanced Raman spectroscopy.利用针尖增强拉曼光谱进行纳米级化学成像。
Nat Protoc. 2019 Apr;14(4):1169-1193. doi: 10.1038/s41596-019-0132-z. Epub 2019 Mar 25.
8
prediction of chemical subcellular localization multi-classification methods.化学亚细胞定位的预测 多分类方法
Medchemcomm. 2017 Mar 29;8(6):1225-1234. doi: 10.1039/c7md00074j. eCollection 2017 Jun 1.

本文引用的文献

1
Model-free drug-likeness from fragments.无模型碎片类药性质预测。
J Chem Inf Model. 2010 Aug 23;50(8):1387-94. doi: 10.1021/ci100202p.
3
Mitochondria-penetrating peptides.线粒体穿透肽
Chem Biol. 2008 Apr;15(4):375-82. doi: 10.1016/j.chembiol.2008.03.015.
5

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验