Francis Bitter Magnet Laboratory, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139, United States.
J Am Chem Soc. 2011 Sep 7;133(35):13967-74. doi: 10.1021/ja203756x. Epub 2011 Aug 12.
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range (13)C-(13)C correlation spectra and the third based on the identification of intermolecular interactions in (13)C-(15)N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3 or PI3K-SH3), that efficient (13)C-(13)C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The (13)C-(13)C experiments are corroborated by (15)N-(13)C correlation spectra obtained from a mixed [(15)N,(12)C]/[(14)N,(13)C] sample which directly quantify interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular (15)N-(13)C constraints detectable in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total, the experiments provide 111 intermolecular (13)C-(13)C and (15)N-(13)C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril.
我们描述了设计用于阐明淀粉样纤维间结构的魔角旋转 NMR 实验。为此目的介绍了三种方法,其中两种方法基于长程(13)C-(13)C 相关光谱的分析,第三种方法基于(13)C-(15)N 光谱中分子间相互作用的鉴定。我们在研究由 PI3 激酶(PI3-SH3 或 PI3K-SH3)的 86 残基 SH3 结构域形成的纤维时表明,有效的(13)C-(13)C 相关光谱显示出共振简并性,从而确定了纤维中蛋白质的平行、对齐排列。此外,这种简并性可以被绕过以产生直接的分子间约束。(13)C-(13)C 实验通过从混合 [(15)N,(12)C]/[(14)N,(13)C] 样品获得的(15)N-(13)C 相关光谱得到证实,该光谱直接定量了链间距离。此外,当在 100 K 下通过动态核极化(DNP)提供信号增强来记录光谱时,我们证明了在光谱中可检测的分子间(15)N-(13)C 约束的数量急剧增加(从 23 增加到 52)。信息含量的增加是由于信号强度增强以及低温下导致光谱强度损失的动态过程被猝灭。因此,低温光谱的采集解决了 MAS 光谱中蛋白质经常遇到的问题。总的来说,这些实验提供了 111 个分子间(13)C-(13)C 和(15)N-(13)C 约束,这些约束确定了 PI3-SH3 蛋白链在淀粉样纤维中以平行、对齐的方式排列。