Elathram Nesreen, Ackermann Bryce E, Debelouchina Galia T
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, U.S.A.
J Magn Reson Open. 2022 Jun;10-11. doi: 10.1016/j.jmro.2022.100057. Epub 2022 Mar 26.
Chromatin is a DNA-protein polymer that represents the functional form of the genome. The main building block of chromatin is the nucleosome, a structure that contains 147 base pairs of DNA and two copies each of the histone proteins H2A, H2B, H3 and H4. Previous work has shown that magic angle spinning (MAS) NMR spectroscopy can capture the nucleosome at high resolution although studies have been challenging due to low sensitivity, the presence of dynamic and rigid components, and the complex interaction networks of nucleosomes within the chromatin polymer. Here, we use dynamic nuclear polarization (DNP) to enhance the sensitivity of MAS NMR experiments of nucleosome arrays at 100 K and show that well-resolved C-C MAS NMR correlations can be obtained much more efficiently. We evaluate the effect of temperature on the chemical shifts and linewidths in the spectra and demonstrate that changes are relatively minimal and clustered in regions of histone-DNA or histone-histone contacts. We also compare samples prepared with and without DNA and show that the low temperature C-C correlations exhibit sufficient resolution to detect chemical shift changes and line broadening for residues that form the DNA-histone interface. On the other hand, we show that the measurement of DNP-enhanced N-C histone-histone interactions within the nucleosome core is complicated by the natural C abundance network in the sample. Nevertheless, the enhanced sensitivity afforded by DNP can be used to detect long-range correlations between histone residues and DNA. Overall, our experiments demonstrate that DNP-enhanced MAS NMR spectroscopy of chromatin samples yields spectra with high resolution and sensitivity and can be used to capture functionally relevant protein-DNA interactions that have implications for gene regulation and genome organization.
染色质是一种DNA-蛋白质聚合物,代表基因组的功能形式。染色质的主要组成部分是核小体,该结构包含147个碱基对的DNA以及组蛋白H2A、H2B、H3和H4各两个拷贝。先前的研究表明,魔角旋转(MAS)核磁共振光谱能够以高分辨率捕获核小体,不过由于灵敏度低、存在动态和刚性成分以及染色质聚合物内核小体的复杂相互作用网络,相关研究颇具挑战性。在此,我们利用动态核极化(DNP)来提高100 K下核小体阵列的MAS NMR实验的灵敏度,并表明能够更高效地获得分辨率良好的C-C MAS NMR相关谱。我们评估了温度对光谱中化学位移和线宽的影响,并证明变化相对较小,且集中在组蛋白-DNA或组蛋白-组蛋白接触区域。我们还比较了有DNA和无DNA情况下制备的样品,结果表明低温C-C相关谱具有足够的分辨率,能够检测形成DNA-组蛋白界面的残基的化学位移变化和谱线展宽。另一方面,我们表明,由于样品中天然碳丰度网络的存在,测量核小体核心内DNP增强的N-C组蛋白-组蛋白相互作用变得复杂。尽管如此,DNP提供的增强灵敏度可用于检测组蛋白残基与DNA之间的长程相关性。总体而言,我们的实验表明,染色质样品的DNP增强MAS NMR光谱能够产生具有高分辨率和灵敏度的光谱,可用于捕获与功能相关的蛋白质-DNA相互作用,这些相互作用对基因调控和基因组组织具有重要意义。