Department of Chemistry, Columbia University, New York, New York 10025, United States.
J Phys Chem Lett. 2024 Feb 29;15(8):2270-2278. doi: 10.1021/acs.jpclett.3c02589. Epub 2024 Feb 21.
NMR chemical shifts provide a sensitive probe of protein structure and dynamics but remain challenging to predict and interpret. We examine the effect of protein conformational distributions on N chemical shifts for dihydrofolate reductase (DHFR), comparing QM/MM predicted shifts with experimental shifts in solution as well as frozen distributions. Representative snapshots from MD trajectories exhibit variation in predicted N chemical shifts of up to 25 ppm. The average over the fluctuations is in significantly better agreement with room temperature solution experimental values than the prediction for any single optimal conformations. Meanwhile, solid-state NMR (SSNMR) measurements of frozen solutions at 105 K exhibit broad lines whose widths agree well with the widths of distributions of predicted shifts for samples from the trajectory. The backbone torsion angle ψ varies over 60° on the picosecond time scale, compensated by φ. These fluctuations can explain much of the shift variation.
NMR 化学位移为蛋白质结构和动力学提供了一个敏感的探针,但仍然难以预测和解释。我们考察了蛋白质构象分布对二氢叶酸还原酶(DHFR)N 化学位移的影响,将 QM/MM 预测的位移与溶液中和冻结分布中的实验位移进行了比较。MD 轨迹中的代表性快照显示,预测的 N 化学位移变化高达 25ppm。与任何单个最优构象的预测相比,在波动中的平均值与室温溶液实验值的吻合度要显著更好。同时,在 105 K 下对冻结溶液进行固态 NMR(SSNMR)测量,得到的宽谱线与轨迹中样品预测位移分布的宽度吻合良好。在皮秒时间尺度上,后键扭转角 ψ 变化超过 60°,由 φ 补偿。这些波动可以解释大部分的位移变化。