Suppr超能文献

预测和实验 NMR 化学位移随温度变化:蛋白质构象动力学的影响。

Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics.

机构信息

Department of Chemistry, Columbia University, New York, New York 10025, United States.

出版信息

J Phys Chem Lett. 2024 Feb 29;15(8):2270-2278. doi: 10.1021/acs.jpclett.3c02589. Epub 2024 Feb 21.

Abstract

NMR chemical shifts provide a sensitive probe of protein structure and dynamics but remain challenging to predict and interpret. We examine the effect of protein conformational distributions on N chemical shifts for dihydrofolate reductase (DHFR), comparing QM/MM predicted shifts with experimental shifts in solution as well as frozen distributions. Representative snapshots from MD trajectories exhibit variation in predicted N chemical shifts of up to 25 ppm. The average over the fluctuations is in significantly better agreement with room temperature solution experimental values than the prediction for any single optimal conformations. Meanwhile, solid-state NMR (SSNMR) measurements of frozen solutions at 105 K exhibit broad lines whose widths agree well with the widths of distributions of predicted shifts for samples from the trajectory. The backbone torsion angle ψ varies over 60° on the picosecond time scale, compensated by φ. These fluctuations can explain much of the shift variation.

摘要

NMR 化学位移为蛋白质结构和动力学提供了一个敏感的探针,但仍然难以预测和解释。我们考察了蛋白质构象分布对二氢叶酸还原酶(DHFR)N 化学位移的影响,将 QM/MM 预测的位移与溶液中和冻结分布中的实验位移进行了比较。MD 轨迹中的代表性快照显示,预测的 N 化学位移变化高达 25ppm。与任何单个最优构象的预测相比,在波动中的平均值与室温溶液实验值的吻合度要显著更好。同时,在 105 K 下对冻结溶液进行固态 NMR(SSNMR)测量,得到的宽谱线与轨迹中样品预测位移分布的宽度吻合良好。在皮秒时间尺度上,后键扭转角 ψ 变化超过 60°,由 φ 补偿。这些波动可以解释大部分的位移变化。

相似文献

1
Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics.
J Phys Chem Lett. 2024 Feb 29;15(8):2270-2278. doi: 10.1021/acs.jpclett.3c02589. Epub 2024 Feb 21.
3
Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2301053120. doi: 10.1073/pnas.2301053120. Epub 2024 Feb 12.
4
PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
J Biomol NMR. 2012 Nov;54(3):257-65. doi: 10.1007/s10858-012-9668-8. Epub 2012 Sep 13.
5
Mapping of protein structural ensembles by chemical shifts.
J Biomol NMR. 2010 Oct;48(2):71-83. doi: 10.1007/s10858-010-9438-4. Epub 2010 Aug 1.
7
Interpreting protein structural dynamics from NMR chemical shifts.
J Am Chem Soc. 2012 Apr 11;134(14):6365-74. doi: 10.1021/ja300265w. Epub 2012 Mar 28.
8
Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
bioRxiv. 2023 Jan 25:2023.01.24.525358. doi: 10.1101/2023.01.24.525358.

本文引用的文献

1
Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2301053120. doi: 10.1073/pnas.2301053120. Epub 2024 Feb 12.
2
Hypervariability of accessible and inaccessible conformational space of proteins.
Curr Res Struct Biol. 2021 Sep 16;3:229-238. doi: 10.1016/j.crstbi.2021.09.001. eCollection 2021.
6
Using quantum chemistry to estimate chemical shifts in biomolecules.
Biophys Chem. 2020 Dec;267:106476. doi: 10.1016/j.bpc.2020.106476. Epub 2020 Sep 16.
7
Curvature and Torsion of Protein Main Chain as Local Order Parameters of Protein Unfolding.
J Phys Chem B. 2020 Jun 4;124(22):4391-4398. doi: 10.1021/acs.jpcb.0c01230. Epub 2020 May 24.
10
Backbone amide N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study.
Solid State Nucl Magn Reson. 2018 Aug;92:1-6. doi: 10.1016/j.ssnmr.2018.03.002. Epub 2018 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验