Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan.
Department of Design for Sustainable Environment, Ming Dao University, 369 Wen-Hua Rd., Peetow, Chang-Hua 52345, Taiwan.
Int J Environ Res Public Health. 2011 Jun;8(6):2153-2169. doi: 10.3390/ijerph8062153. Epub 2011 Jun 14.
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.
细颗粒物(PM2.5)对人体健康有不良影响。评估 PM2.5 暴露对人类健康和生态的长期影响通常受到缺乏可靠 PM2.5 测量数据的限制。在台北,直到 2005 年 8 月才开始系统地测量 PM2.5 水平。由于地理信息系统(GIS)的普及,土地利用回归方法已广泛用于 PM 浓度的空间估计。该方法考虑了当地环境的潜在影响因素,如交通量。另一方面,地统计学方法考虑了环境污染物观测值之间的时空相关性。本研究评估了土地利用回归模型在台北地区 PM2.5 时空估计中的性能。具体来说,本研究将土地利用回归模型与贝叶斯最大熵(BME)方法中的地统计学方法相结合。由此产生的认知框架可以同化包括以下内容的知识库:(a)基于土地利用回归的 PM 浓度空间趋势的经验基础,(b)PM 观测信息之间的时空相关性,以及(c)特定地点的 PM 观测值。所提出的方法可用于对 2005 年至 2007 年期间台湾台北地区的 PM2.5 水平进行时空估计。