Leichnetz G R
Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709.
Vis Neurosci. 1990 Aug;5(2):123-33. doi: 10.1017/s095252380000016x.
The bidirectional axonal transport capabilities of the horseradish peroxidase (HRP) technique facilitated the study of the frontal-eye-field (FEF) input and pretectal output of two regions of extrastriate preoccipital cortex (POC). Following horseradish peroxidase (HRP) gel implants into the middle and dorsal POC in two rhesus monkeys, the middle POC implant demonstrated retrograde frontal cortical labeling largely restricted to the inferior frontal eye field (iFEF) and adjacent inferior prefrontal convexity, whereas the dorsal POC implant showed labeling in the caudal ventral bank of the superior ramus of the arcuate sulcus (sas) and middle-to-dorsal region of the rostral bank of the concavity of the arcuate sulcus (dorsal FEF). Prominent anterogradely labeled efferent preoccipital projections were observed to the ipsilateral pretectal olivary nucleus (PON) and to a lesser extent the anterior pretectal nucleus. Although the middle POC case had heavier projections to the lateral PON, the dorsal case projected more heavily to the medial PON. In addition, both implants demonstrated subcortical connections with the lateral and dorsal inferior pulvinar nuclei, central superior lateral thalamic intralaminar nucleus, caudate nucleus, and middle-to-ventral claustrum. However, while the middle POC implant had efferent projections to the superficial superior colliculus (SC), pregeniculate nucleus (PGN), lateral terminal accessory optic nucleus (LTN), and dorsolateral pontine nucleus (DLPN), resembling those previously reported for the middle temporal (MT) visual area (Maunsell & Van Essen, 1982; Ungerleider et al., 1984), the dorsal implant had projections to the lateral intermediate SC, zona incerta (ZI), PGN, a notably lesser projection to the LTN, and basilar pontine projections to the lateral and lateral dorsal pontine subnuclei (not including the extreme dorsolateral DLPN). These preliminary results suggest that the preoccipital cortex, which reportedly functions in pupillary constriction, accommodation, and convergence, entertains connections with the PON and other visuomotor-related structures, and thus could act as an intermediary in the pathway between the iFEF and PON, and provide a possible explanation for pupillary effects that occur with stimulation of the FEF (Jampel, 1960) and within the contex of other oculomotor activities. The findings shed light on certain differences in connections of middle vs. dorsal POC with visuomotor-related nuclei, and appear to suggest that the middle region, which receives input from the iFEF, has greater access to the optokinetic (OKN) system by virtue of its projection to the LTN, and to the smooth-pursuit system b
辣根过氧化物酶(HRP)技术的双向轴突运输能力有助于研究枕前额外皮层(POC)两个区域的额眼区(FEF)输入和顶盖前输出。在两只恒河猴的枕前叶中部和背部植入HRP凝胶后,中部POC植入物显示逆行性额叶皮质标记主要局限于额下回眼区(iFEF)和相邻的额下前凸面,而背部POC植入物在弓状沟上支尾侧腹侧缘和弓状沟凹陷嘴侧缘的中背区域(背侧FEF)有标记。观察到明显的顺行标记的枕前传出投射到同侧顶盖前橄榄核(PON),在较小程度上投射到顶盖前核。虽然中部POC病例向外侧PON的投射较重,但背部病例向内侧PON的投射更重。此外,两种植入物都显示与外侧和背侧下丘核、丘脑中央上外侧层内核、尾状核以及中腹屏状核有皮质下连接。然而,虽然中部POC植入物有传出投射到上丘浅层(SC)、外侧膝状体前核(PGN)、外侧终末副视核(LTN)和背外侧脑桥核(DLPN),类似于先前报道的颞中(MT)视觉区(Maunsell & Van Essen,1982;Ungerleider等人,1984),但背部植入物有投射到外侧中间SC、未定带(ZI)、PGN,向LTN的投射明显较少,以及基底脑桥投射到外侧和背外侧脑桥亚核(不包括极背外侧的DLPN)。这些初步结果表明,据报道在瞳孔收缩、调节和集合中起作用的枕前叶皮层与PON和其他视觉运动相关结构有联系,因此可能在iFEF和PON之间的通路中起中介作用,并为刺激FEF(Jampel,1960)以及在其他动眼神经活动背景下出现的瞳孔效应提供可能的解释。这些发现揭示了中部与背部POC在与视觉运动相关核团连接上的某些差异,似乎表明接受iFEF输入的中部区域,由于其向LTN的投射,对视动(OKN)系统有更大的通路,并且对平稳跟踪系统也有通路。