STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK.
Phys Chem Chem Phys. 2011 Sep 7;13(33):15272-82. doi: 10.1039/c1cp21244c. Epub 2011 Jul 21.
We study the generation of a dinuclear Fe(IV)oxo species, EDTAH·FeO·OFe·EDTAH, in aqueous solution at room temperature using Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD). This species has been postulated as an intermediate in the multi-step mechanism of autoxidation of Fe(II) to Fe(III) in the presence of atmospheric O(2) and EDTA ligand in water. We examine the formation of EDTAH·FeO·OFe·EDTAH by direct cleavage of O(2), and the effects of solvation on the spin state and O-O cleavage barrier. We also study the reactivity of the resulting dinuclear Fe(IV)oxo system in CH(4) hydroxylation, and its tendency to decompose to mononuclear Fe(IV)oxo species. The presence of the solvent is shown to play a crucial role, determining important changes in all these processes compared to the gas phase. We show that, in water solution, EDTAH·FeO·OFe·EDTAH (as well as its precursor EDTAH·Fe·O(2)·Fe·EDTAH) exists as stable species in a S = 4 ground spin state when hydrogen-bonded to a single water molecule. Its structure comprises two facing Fe(IV)oxo groups, in an arrangement similar to the one evinced for the active centre of intermediate Q of soluble Methane Monooxygenase (sMMO). The inclusion of the water molecule in the complex decreases the overall symmetry of the system, and brings about important changes in the energy and spatial distribution of orbitals of the Fe(IV)oxo groups relative to the gas phase. In particular, the virtual 3σ* orbital of one of the Fe(IV)oxo groups experiences much reduced repulsive orbital interactions from ligand orbitals, and its consequent stabilisation dramatically enhances the electrophilic character of the complex, compared to the symmetrical non-hydrated species, and its ability to act as an acceptor of a H atom from the CH(4) substrate. The computed free energy barrier for H abstraction is 28.2 kJ mol(-1) (at the BLYP level of DFT), considerably below the gas phase value for monomeric FeO·EDTAH, and much below the solution value for the prototype hydrated ferryl ion FeO(H(2)O)(5).
我们使用密度泛函理论(DFT)和从头算分子动力学(AIMD)研究了在室温下水溶液中二核 Fe(IV)氧物种EDTAH·FeO·OFe·EDTAH的生成。该物种被假定为在大气 O(2)和 EDTA 配体存在下,Fe(II)自氧化为 Fe(III)的多步骤机制中的一个中间体。我们研究了 O(2)直接断裂形成EDTAH·FeO·OFe·EDTAH的过程,以及溶剂对自旋态和 O-O 断裂势垒的影响。我们还研究了所得双核 Fe(IV)氧体系在 CH(4)羟化中的反应性及其分解为单核 Fe(IV)氧物种的趋势。结果表明,与气相相比,溶剂的存在起着至关重要的作用,决定了所有这些过程的重要变化。我们表明,在水溶液中,EDTAH·FeO·OFe·EDTAH(及其前体EDTAH·Fe·O(2)·Fe·EDTAH) 以稳定的 S = 4 基自旋态存在,当与单个水分子氢键合时。其结构由两个面对的 Fe(IV)氧基团组成,排列类似于可溶性甲烷单加氧酶 (sMMO)活性中心的中间 Q。水分子的包含降低了系统的整体对称性,并导致 Fe(IV)氧基团的轨道能量和空间分布发生重要变化相对于气相。特别是,一个 Fe(IV)氧基团的虚拟 3σ*轨道经历了来自配体轨道的排斥轨道相互作用大大减少,其随后的稳定化显著增强了配合物的亲电性,与对称非水合物种相比,以及其作为 CH(4)底物 H 原子接受体的能力。计算得到的 H 原子提取的自由能势垒为 28.2 kJ mol(-1)(在 DFT 的 BLYP 水平),远低于单体FeO·EDTAH的气相值,也远低于原型水合过氧离子FeO(H(2)O)(5)的溶液值。