Suppr超能文献

单核和双核铁氧催化剂的羟化催化作用:甲烷单加氧酶模型体系与芬顿试剂 Fe(IV)O(H2O)5(2+)的对比。

Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+).

机构信息

Theoretische Chemie, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

出版信息

Inorg Chem. 2012 Jan 2;51(1):63-75. doi: 10.1021/ic200754w. Epub 2011 Dec 19.

Abstract

Hydroxylation of aliphatic C-H bonds is a chemically and biologically important reaction, which is catalyzed by the oxidoiron group FeO(2+) in both mononuclear (heme and nonheme) and dinuclear complexes. We investigate the similarities and dissimilarities of the action of the FeO(2+) group in these two configurations, using the Fenton-type reagent [FeO(2+) in a water solution, FeO(H(2)O)(5)(2+)] and a model system for the methane monooxygenase (MMO) enzyme as representatives. The high-valent iron oxo intermediate MMOH(Q) (compound Q) is regarded as the active species in methane oxidation. We show that the electronic structure of compound Q can be understood as a dimer of two Fe(IV)O(2+) units. This implies that the insights from the past years in the oxidative action of this ubiquitous moiety in oxidation catalysis can be applied immediately to MMOH(Q). Electronically the dinuclear system is not fundamentally different from the mononuclear system. However, there is an important difference of MMOH(Q) from FeO(H(2)O)(5)(2+): the largest contribution to the transition state (TS) barrier in the case of MMOH(Q) is not the activation strain (which is in this case the energy for the C-H bond lengthening to the TS value), but it is the steric hindrance of the incoming CH(4) with the ligands representing glutamate residues. The importance of the steric factor in the dinuclear system suggests that it may be exploited, through variation in the ligand framework, to build a synthetic oxidation catalyst with the desired selectivity for the methane substrate.

摘要

脂肪族 C-H 键的羟化是一种在化学和生物学上都很重要的反应,它由单核(血红素和非血红素)和双核配合物中的氧化亚铁基团 FeO(2+) 催化。我们使用 Fenton 型试剂[FeO(2+)在水溶液中,FeO(H(2)O)(5)(2+)]和甲烷单加氧酶(MMO)酶的模型体系来研究这两种构型中 FeO(2+) 基团的相似性和差异性。高氧化态的铁氧中间物 MMOH(Q)(化合物 Q)被认为是甲烷氧化的活性物质。我们表明,化合物 Q 的电子结构可以理解为两个 Fe(IV)O(2+) 单元的二聚体。这意味着过去几年在氧化催化中这种普遍存在的部分的氧化作用的见解可以立即应用于 MMOH(Q)。从电子学的角度来看,双核体系与单核体系并没有根本的不同。然而,MMOH(Q)与 FeO(H(2)O)(5)(2+)有一个重要的区别:在 MMOH(Q)的情况下,对过渡态(TS)势垒贡献最大的不是活化应变(在这种情况下,是 C-H 键延长到 TS 值的能量),而是进入的 CH(4)与代表谷氨酸残基的配体之间的空间位阻。双核体系中空间位阻因素的重要性表明,可以通过改变配体框架来利用它,构建具有所需甲烷底物选择性的合成氧化催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验