Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
Curr Biol. 2019 Feb 18;29(4):554-566.e4. doi: 10.1016/j.cub.2019.01.009. Epub 2019 Feb 7.
Animals use sensory information to move toward more favorable conditions. Drosophila larvae can move up or down gradients of odors (chemotax), light (phototax), and temperature (thermotax) by modulating the probability, direction, and size of turns based on sensory input. Whether larvae can anemotax in gradients of mechanosensory cues is unknown. Further, although many of the sensory neurons that mediate taxis have been described, the central circuits are not well understood. Here, we used high-throughput, quantitative behavioral assays to demonstrate Drosophila larvae anemotax in gradients of wind speeds and to characterize the behavioral strategies involved. We found that larvae modulate the probability, direction, and size of turns to move away from higher wind speeds. This suggests that similar central decision-making mechanisms underlie taxis in somatosensory and other sensory modalities. By silencing the activity of single or very few neuron types in a behavioral screen, we found two sensory (chordotonal and multidendritic class III) and six nerve cord neuron types involved in anemotaxis. We reconstructed the identified neurons in an electron microscopy volume that spans the entire larval nervous system and found they received direct input from the mechanosensory neurons or from each other. In this way, we identified local interneurons and first- and second-order subesophageal zone (SEZ) and brain projection neurons. Finally, silencing a dopaminergic brain neuron type impairs anemotaxis. These findings suggest that anemotaxis involves both nerve cord and brain circuits. The candidate neurons and circuitry identified in our study provide a basis for future detailed mechanistic understanding of the circuit principles of anemotaxis.
动物利用感官信息向更有利的条件移动。果蝇幼虫可以通过根据感官输入调制转弯的概率、方向和大小,在气味(化学趋性)、光(光趋性)和温度(热趋性)梯度中向上或向下移动。幼虫是否可以在机械感觉线索的梯度中向风移动尚不清楚。此外,尽管已经描述了许多介导趋性的感觉神经元,但中枢回路还不太清楚。在这里,我们使用高通量、定量行为测定法证明了果蝇幼虫在风速梯度中的向风性,并对所涉及的行为策略进行了表征。我们发现幼虫会调节转弯的概率、方向和大小,以远离更高的风速。这表明,类似的中央决策机制是躯体感觉和其他感觉模式中的趋性的基础。通过在行为筛选中沉默单个或极少数神经元类型的活动,我们发现两种感觉(触须和多树突 III 类)和六种神经索神经元类型参与向风性。我们在跨越整个幼虫神经系统的电子显微镜体积中重建了鉴定出的神经元,并发现它们直接接收来自机械感觉神经元或彼此的输入。通过这种方式,我们鉴定了局部中间神经元以及第一和第二级食管下区(SEZ)和大脑投射神经元。最后,沉默多巴胺能脑神经元类型会损害向风性。这些发现表明向风性涉及神经索和大脑回路。我们在研究中鉴定的候选神经元和电路为未来对向风性的电路原理进行详细的机制理解提供了基础。