Larderet Ivan, Fritsch Pauline Mj, Gendre Nanae, Neagu-Maier G Larisa, Fetter Richard D, Schneider-Mizell Casey M, Truman James W, Zlatic Marta, Cardona Albert, Sprecher Simon G
Department of Biology, University of Fribourg, Fribourg, Switzerland.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
Elife. 2017 Aug 8;6:e28387. doi: 10.7554/eLife.28387.
Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.
视觉系统转导、处理并传递与光相关的环境线索。视觉特征的计算取决于所存在的光感受器神经元类型(PR)、眼睛的组织结构以及潜在神经回路的布线。在这里,我们通过绘制突触连接图和神经递质来描述幼虫视觉系统的电路结构。通过与不同的靶标接触,两种幼虫PR亚型创建了两条汇聚通路,这可能是在这个第一个视觉处理中心内对环境光强度和光的时间变化进行计算的基础。经过局部处理的视觉信息随后通过专门的投射中间神经元向包括侧角和蘑菇体在内的更高脑区发出信号。幼虫视神经纤维层(LON)的分层结构表明其与成年果蝇和脊椎动物视觉系统具有共同的组织原则。LON完整的突触连接图为理解数值复杂度降低的电路如何控制广泛的行为铺平了道路。