Suppr超能文献

小窝通过其独特的蛋白质含量、脂质分布和形态,形成局部信号域。

Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology.

机构信息

Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.

出版信息

J Mol Cell Cardiol. 2012 Feb;52(2):366-75. doi: 10.1016/j.yjmcc.2011.07.007. Epub 2011 Jul 19.

Abstract

Compartmentation of signalling allows multiple stimuli to achieve diverse cellular responses with only a limited pool of second messengers. This spatial control of signalling is achieved, in part, by cellular structures which bring together elements of a particular cascade. One such structure is the caveola, a flask-shaped lipid raft. Caveolae are well-recognised as signalosomes, platforms for assembly of signalling complexes of receptors, effectors and their targets, which can facilitate efficient and specific cellular responses. Here we extend this simple model and present evidence to show how the protein and lipid profiles of caveolae, as well as their characteristic morphology, define their roles in creating local signalling domains in the cardiac myocyte. This article is part of a Special Issue entitled "Local Signaling in Myocytes."

摘要

信号分隔使得多种刺激能够通过有限的第二信使实现多种细胞反应。这种信号的空间控制部分是通过将特定级联的元素聚集在一起的细胞结构来实现的。这样的结构之一是 caveola,一种瓶形的脂筏。caveolae 被很好地识别为信号体,是受体、效应器及其靶标信号复合物组装的平台,能够促进有效的、特异性的细胞反应。在这里,我们扩展了这个简单的模型,并提供证据表明 caveolae 的蛋白质和脂质谱以及它们的特征形态如何在心肌细胞中创建局部信号域中发挥作用。本文是题为“心肌细胞中的局部信号”特刊的一部分。

相似文献

1
Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology.
J Mol Cell Cardiol. 2012 Feb;52(2):366-75. doi: 10.1016/j.yjmcc.2011.07.007. Epub 2011 Jul 19.
4
News from the caves: update on the structure and function of caveolae.
Curr Opin Cell Biol. 2014 Aug;29:99-106. doi: 10.1016/j.ceb.2014.04.011. Epub 2014 Jun 5.
5
Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.
J Biol Chem. 2006 Sep 8;281(36):26391-9. doi: 10.1074/jbc.M602577200. Epub 2006 Jul 3.
6
Role of caveolae in cardiac protection.
Pediatr Cardiol. 2011 Mar;32(3):329-33. doi: 10.1007/s00246-010-9881-8. Epub 2011 Jan 6.
7
The caveolae dress code: structure and signaling.
Curr Opin Cell Biol. 2017 Aug;47:117-125. doi: 10.1016/j.ceb.2017.02.014. Epub 2017 Jun 20.
8
Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase.
Am J Physiol Cell Physiol. 2003 Jun;284(6):C1550-60. doi: 10.1152/ajpcell.00555.2002. Epub 2003 Feb 26.
9
Methods for the study of signaling molecules in membrane lipid rafts and caveolae.
Methods Mol Biol. 2006;332:181-91. doi: 10.1385/1-59745-048-0:181.
10
Caveolae, caveolin, and cavins: potential targets for the treatment of cardiac disease.
Ann Med. 2012 Sep;44(6):530-41. doi: 10.3109/07853890.2011.577445. Epub 2011 Jun 9.

引用本文的文献

2
YTHDF1 is pivotal for maintenance of cardiac homeostasis.
J Mol Cell Cardiol. 2024 Aug;193:25-35. doi: 10.1016/j.yjmcc.2024.05.008. Epub 2024 May 18.
3
Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function.
Matrix Biol Plus. 2022 Sep 7;16:100121. doi: 10.1016/j.mbplus.2022.100121. eCollection 2022 Dec.
4
Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells.
Front Cardiovasc Med. 2022 Mar 28;9:869481. doi: 10.3389/fcvm.2022.869481. eCollection 2022.
6
The Role of POPDC Proteins in Cardiac Pacemaking and Conduction.
J Cardiovasc Dev Dis. 2021 Nov 23;8(12):160. doi: 10.3390/jcdd8120160.
8
Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy.
BioDrugs. 2021 Nov;35(6):643-671. doi: 10.1007/s40259-021-00500-y. Epub 2021 Oct 27.
9
Compartmentalized cAMP signaling in cardiac ventricular myocytes.
Cell Signal. 2022 Jan;89:110172. doi: 10.1016/j.cellsig.2021.110172. Epub 2021 Oct 20.
10
Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding.
J Physiol. 2021 Oct;599(20):4527-4544. doi: 10.1113/JP280801. Epub 2021 Sep 27.

本文引用的文献

1
Integration of transient receptor potential canonical channels with lipids.
Acta Physiol (Oxf). 2012 Feb;204(2):227-37. doi: 10.1111/j.1748-1716.2011.02311.x. Epub 2011 May 27.
2
Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization.
J Biol Chem. 2011 Apr 29;286(17):14830-41. doi: 10.1074/jbc.M110.214270. Epub 2011 Mar 1.
3
Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca(2+)-transient.
J Mol Cell Cardiol. 2011 May;50(5):863-71. doi: 10.1016/j.yjmcc.2011.02.007. Epub 2011 Feb 21.
4
Cells respond to mechanical stress by rapid disassembly of caveolae.
Cell. 2011 Feb 4;144(3):402-13. doi: 10.1016/j.cell.2010.12.031.
5
Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes.
J Mol Cell Cardiol. 2011 Mar;50(3):500-9. doi: 10.1016/j.yjmcc.2010.11.015. Epub 2010 Nov 27.
6
Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node.
J Gen Physiol. 2010 Sep;136(3):247-58. doi: 10.1085/jgp.201010488. Epub 2010 Aug 16.
7
Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels.
Circ Res. 2010 Sep 17;107(6):747-56. doi: 10.1161/CIRCRESAHA.109.216127. Epub 2010 Jul 29.
9
α1-adrenoceptors regulate only the caveolae-located subpopulation of cardiac K(V)4 channels.
Channels (Austin). 2010 May-Jun;4(3):168-78. doi: 10.4161/chan.4.3.11479.
10
Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation.
Science. 2010 Mar 26;327(5973):1653-7. doi: 10.1126/science.1185988. Epub 2010 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验