Suppr超能文献

用于基因传递的 HPMA-寡聚赖氨酸共聚物:肽长度和聚合物分子量的优化。

HPMA-oligolysine copolymers for gene delivery: optimization of peptide length and polymer molecular weight.

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

出版信息

J Control Release. 2011 Oct 30;155(2):303-11. doi: 10.1016/j.jconrel.2011.07.009. Epub 2011 Jul 14.

Abstract

Polycations are one of the most frequently used classes of materials for non-viral gene transfer in vivo. Several studies have demonstrated a sensitive relationship between polymer structure and delivery activity. In this work, we used reverse addition-fragmentation chain transfer (RAFT) polymerization to build a panel of N-(2-hydroxypropyl)methacrylamide (HPMA)-oligolysine copolymers with varying peptide length and polymer molecular weight. The panel was screened for optimal DNA-binding, colloidal stability in salt, high transfection efficiency, and low cytotoxicity. Increasing polyplex stability in PBS correlated with increasing polymer molecular weight and decreasing peptide length. Copolymers containing K(5) and K(10) oligocations transfected cultured cells with significantly higher efficiencies than copolymers of K(15). Four HPMA-oligolysine copolymers were identified that met the desired criteria. Polyplexes formed with these copolymers demonstrated both salt stability and transfection efficiencies on-par with poly(ethylenimine) PEI in cultured cells.

摘要

聚阳离子是体内非病毒基因转移最常用的材料之一。多项研究表明,聚合物结构与输送活性之间存在敏感关系。在这项工作中,我们使用反向加成-断裂链转移(RAFT)聚合来构建一系列具有不同肽长度和聚合物分子量的 N-(2-羟丙基)甲基丙烯酰胺(HPMA)-寡聚赖氨酸共聚物。该共聚物面板经过筛选,以获得最佳的 DNA 结合能力、盐中的胶体稳定性、高转染效率和低细胞毒性。在 PBS 中增加聚集体的稳定性与增加聚合物分子量和降低肽长度相关。含有 K(5)和 K(10)寡阳离子的共聚物转染培养细胞的效率明显高于 K(15)的共聚物。鉴定出四种符合要求的 HPMA-寡聚赖氨酸共聚物。与培养细胞中的聚(亚乙基亚胺)PEI 相比,这些共聚物形成的聚集体既具有盐稳定性,又具有转染效率。

相似文献

1
HPMA-oligolysine copolymers for gene delivery: optimization of peptide length and polymer molecular weight.
J Control Release. 2011 Oct 30;155(2):303-11. doi: 10.1016/j.jconrel.2011.07.009. Epub 2011 Jul 14.
2
Reducible HPMA-co-oligolysine copolymers for nucleic acid delivery.
Int J Pharm. 2012 May 1;427(1):113-22. doi: 10.1016/j.ijpharm.2011.08.015. Epub 2011 Aug 27.
4
Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.
Biomacromolecules. 2013 Nov 11;14(11):4135-49. doi: 10.1021/bm4013088. Epub 2013 Oct 30.
7
Optimization of brush-like cationic copolymers for nonviral gene delivery.
Biomacromolecules. 2013 Jan 14;14(1):275-84. doi: 10.1021/bm301747r. Epub 2012 Dec 28.
9
Poly-L-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT Polymerization as Polyplex-Transfection Reagents with Minimal Toxicity.
Macromol Biosci. 2015 Aug;15(8):1159-73. doi: 10.1002/mabi.201500022. Epub 2015 May 13.
10
Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery.
Biomater Sci. 2013 Jul 1;1(7):736-744. doi: 10.1039/C3BM60079C.

引用本文的文献

1
Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery.
Pharm Res. 2023 Jan;40(1):47-76. doi: 10.1007/s11095-022-03385-w. Epub 2022 Sep 15.
2
PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes.
Langmuir. 2020 Sep 1;36(34):10187-10199. doi: 10.1021/acs.langmuir.0c01675. Epub 2020 Aug 21.
3
DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy.
Radiat Phys Chem Oxf Engl 1993. 2020 Jan;166. doi: 10.1016/j.radphyschem.2019.108521. Epub 2019 Oct 10.
4
The synthesis, properties and potential applications of cyclic polymers.
Nat Chem. 2020 May;12(5):433-444. doi: 10.1038/s41557-020-0440-5. Epub 2020 Apr 6.
5
Poly(peptide): Synthesis, Structure, and Function of Peptide-Polymer Amphiphiles and Protein-like Polymers.
Acc Chem Res. 2020 Feb 18;53(2):400-413. doi: 10.1021/acs.accounts.9b00518. Epub 2020 Jan 22.
6
Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates.
PLoS Biol. 2019 Jun 17;17(6):e3000328. doi: 10.1371/journal.pbio.3000328. eCollection 2019 Jun.
7
Solid-phase supported design of carriers for therapeutic nucleic acid delivery.
Biosci Rep. 2017 Oct 31;37(5). doi: 10.1042/BSR20160617.
8
Covalent nano delivery systems for selective imaging and treatment of brain tumors.
Adv Drug Deliv Rev. 2017 Apr;113:177-200. doi: 10.1016/j.addr.2017.06.002. Epub 2017 Jun 10.
10
Efficient tuning of siRNA dose response by combining mixed polymer nanocarriers with simple kinetic modeling.
Acta Biomater. 2017 Mar 1;50:407-416. doi: 10.1016/j.actbio.2017.01.003. Epub 2017 Jan 4.

本文引用的文献

1
Impact of lipid substitution on assembly and delivery of siRNA by cationic polymers.
Macromol Biosci. 2011 May 12;11(5):662-72. doi: 10.1002/mabi.201000402. Epub 2011 Feb 14.
2
Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems.
Expert Opin Drug Deliv. 2011 Mar;8(3):343-57. doi: 10.1517/17425247.2011.554818. Epub 2011 Feb 4.
3
Evaluation of nanoparticle aggregation in human blood serum.
Biomacromolecules. 2010 Nov 8;11(11):2836-9. doi: 10.1021/bm100971q. Epub 2010 Oct 20.
4
Synthesis of statistical copolymers containing multiple functional peptides for nucleic Acid delivery.
Biomacromolecules. 2010 Nov 8;11(11):3007-13. doi: 10.1021/bm100806h. Epub 2010 Oct 5.
6
Gene delivery by lipoplexes and polyplexes.
Eur J Pharm Sci. 2010 Jun 14;40(3):159-70. doi: 10.1016/j.ejps.2010.03.019. Epub 2010 Mar 30.
7
Effect of clustered peptide binding on DNA condensation.
Mol Biosyst. 2010 Jan;6(1):249-55. doi: 10.1039/b908873c. Epub 2009 Sep 25.
8
Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone.
Biomaterials. 2010 Mar;31(8):2417-24. doi: 10.1016/j.biomaterials.2009.11.086. Epub 2009 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验