Brain Imaging and Analysis Center, Duke University, Durham NC 27705, USA.
Neuroimage. 2012 Jan 2;59(1):297-305. doi: 10.1016/j.neuroimage.2011.07.019. Epub 2011 Jul 19.
Gradient-echo MRI of resonance-frequency shift and T2* values exhibit unique tissue contrast and offer relevant physiological information. However, acquiring 3D-phase images and T2* maps with the standard spoiled gradient echo (SPGR) sequence is lengthy for routine imaging at high-spatial resolution and whole-brain coverage. In addition, with the standard SPGR sequence, optimal signal-to-noise ratio (SNR) cannot be achieved for every tissue type given their distributed resonance frequency and T2* value. To address these two issues, a SNR optimized multi-echo sequence with a stack-of-spiral acquisition is proposed and implemented for achieving fast and simultaneous acquisition of image phase and T2* maps. The analytical behavior of the phase SNR is derived as a function of resonance frequency, T2* and echo time. This relationship is utilized to achieve tissue optimized SNR by combining phase images with different echo times. Simulations and in vivo experiments were designed to verify the theoretical predictions. Using the multi-echo spiral acquisition, whole-brain coverage with 1 mm isotropic resolution can be achieved within 2.5 min, shortening the scan time by a factor of 8. The resulting multi-echo phase map shows similar SNR to that of the standard SPGR. The acquisition can be further accelerated with non-Cartesian parallel imaging. The technique can be readily extended to other multi-shot readout trajectories besides spiral. It may provide a practical acquisition strategy for high resolution and simultaneous 3D mapping of magnetic susceptibility and T2*.
梯度回波 MRI 的共振频率偏移和 T2* 值表现出独特的组织对比,并提供相关的生理信息。然而,使用标准的扰相梯度回波 (SPGR) 序列获取 3D 相位图像和 T2* 图对于高空间分辨率和全脑覆盖的常规成像来说是冗长的。此外,对于具有不同共振频率和 T2* 值的组织类型,使用标准 SPGR 序列无法实现最佳的信噪比 (SNR)。为了解决这两个问题,提出并实现了一种具有螺旋采集的 SNR 优化多回波序列,以实现相位和 T2* 图的快速和同时采集。推导了相位 SNR 的解析行为,作为共振频率、T2* 和回波时间的函数。利用这种关系,通过组合具有不同回波时间的相位图像来实现组织优化的 SNR。设计了模拟和体内实验来验证理论预测。使用多回波螺旋采集,可以在 2.5 分钟内实现 1 毫米各向同性分辨率的全脑覆盖,扫描时间缩短了 8 倍。得到的多回波相位图显示出与标准 SPGR 相似的 SNR。通过非笛卡尔并行成像可以进一步加速采集。该技术可以很容易地扩展到除螺旋以外的其他多拍读出轨迹。它可能为高分辨率和同时进行磁化率和 T2* 的 3D 映射提供一种实用的采集策略。