Suppr超能文献

计算机模拟系统:通过虚拟实验了解痴呆症的流行和动态。

In silico modeling systems: learning about the prevalence and dynamics of dementia through virtual experimentation.

机构信息

Dementia Collaborative Research Centre, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia.

出版信息

Alzheimers Dement. 2011 Jul;7(4):e77-83. doi: 10.1016/j.jalz.2010.11.011.

Abstract

BACKGROUND

Virtual experimentation using computer modeling creates opportunities for researchers who want to better understand disease processes, foresee effects of future demographics, and evaluate combinations of interventions when applied to larger target groups.

METHODS

We created a computer model of dementia prevalence consisting of six population groups representing diagnosed and undiagnosed dementia at mild, moderate, and severe levels. Dynamic transitions between these groups corresponded to the gradual progression of disease. The seventh group represented the general population without dementia aged >60 years from which new dementia cases emerged. Through a series of virtual experiments we estimated future changes in the severity-specific prevalence of dementia in Australia.

RESULTS

The projected total prevalence of dementia in Australia for year 2040 changed from 742,000 to 986,000 (+33%) and to 433,000 (-42%) when the incidence rate was altered by ±50%. Increasing the transition time between mild and moderate dementia from 5 to 7 years and between moderate to severe from 7 to 9 years increased the prevalence of mild dementia by 23% and decreased the prevalence of severe dementia by 24%.

CONCLUSIONS

As computer modeling becomes more accepted, in silico experiments are being routinely performed to update demographic projections. Despite its simplicity, the framework of this model integrates a large pool of knowledge and consists of components which are dynamically interconnected. The computational logic underpins series of assumptions and binds them together with demographic data.

摘要

背景

使用计算机建模进行虚拟实验为研究人员提供了机会,使他们能够更好地了解疾病过程,预测未来人口结构的影响,并评估更大目标群体中干预措施的组合。

方法

我们创建了一个痴呆症患病率的计算机模型,该模型由六个代表轻度、中度和重度诊断和未诊断痴呆症的人群组成。这些群体之间的动态转换对应于疾病的逐渐进展。第七个群体代表无痴呆症的 60 岁以上普通人群,新的痴呆症病例从该群体中出现。通过一系列虚拟实验,我们估计了澳大利亚未来特定严重程度的痴呆症患病率的变化。

结果

2040 年澳大利亚痴呆症的总患病率预计从 742,000 例增加到 986,000 例(增加 33%),当发病率改变±50%时,预计患病率从 742,000 例增加到 986,000 例(增加 33%),然后减少到 433,000 例(减少 42%)。将轻度和中度痴呆之间的过渡时间从 5 年增加到 7 年,以及将中度和重度痴呆之间的过渡时间从 7 年增加到 9 年,将轻度痴呆的患病率增加了 23%,将重度痴呆的患病率降低了 24%。

结论

随着计算机建模的日益普及,虚拟实验正在被常规进行,以更新人口预测。尽管该模型简单,但它集成了大量知识,并由动态连接的组件组成。计算逻辑为一系列假设提供了基础,并将它们与人口数据联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验