Gavara Núria, Manoussaki Daphne, Chadwick Richard S
Auditory Mechanics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA.
Curr Opin Otolaryngol Head Neck Surg. 2011 Oct;19(5):382-7. doi: 10.1097/MOO.0b013e32834a5bc9.
This review is timely and relevant because new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by the mechanical properties of the tectorial membrane and the cochlea's spiral shape.
Main tectorial membrane themes addressed in this review are composition and morphology, nanoscale mechanical interactions with the outer hair cell bundle, macroscale longitudinal coupling, fluid interaction with inner hair cell bundles, and macroscale dynamics and waves. Main cochlear spiral themes are macroscale, low-frequency energy focusing and microscale organ of Corti shear gain.
Recent experimental and theoretical findings reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low-frequency hearing. These findings suggest a number of important research directions.
本综述既及时又具有相关性,因为新的实验和理论发现表明,从纳米尺度到宏观尺度的耳蜗力学受到盖膜的力学特性和耳蜗螺旋形状的影响。
本综述讨论的盖膜主要主题包括组成和形态、与外毛细胞束的纳米尺度力学相互作用、宏观尺度纵向耦合、与内毛细胞束的流体相互作用以及宏观尺度动力学和波。耳蜗螺旋的主要主题包括宏观尺度、低频能量聚焦以及柯蒂氏器的微观剪切增益。
最近的实验和理论发现揭示了耳蜗机械性能对盖膜结构组织、力学及其相对于毛束的定位具有极高的敏感性。耳蜗螺旋几何形状是低频听力的主要决定因素。这些发现提示了一些重要的研究方向。