Suppr超能文献

纳米级几何形状决定了垂直排列纳米纤维的机械生物相容性。

Nanoscale geometry determines mechanical biocompatibility of vertically aligned nanofibers.

机构信息

Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, Espoo, 02150, Finland.

Institute of Biotechnology, HiLife, University of Helsinki, Biocenter 2, Helsinki, 00014, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki, 00014, Finland.

出版信息

Acta Biomater. 2022 Jul 1;146:235-247. doi: 10.1016/j.actbio.2022.04.032. Epub 2022 Apr 27.

Abstract

Vertically aligned carbon nanofibers (VACNFs) are promising material candidates for neural biosensors due to their ability to detect neurotransmitters in physiological concentrations. However, the expected high rigidity of CNFs could induce mechanical mismatch with the brain tissue, eliciting formation of a glial scar around the electrode and thus loss of functionality. We have evaluated mechanical biocompatibility of VACNFs by growing nickel-catalyzed carbon nanofibers of different lengths and inter-fiber distances. Long nanofibers with large inter-fiber distance prevented maturation of focal adhesions, thus constraining cells from obtaining a highly spread morphology that is observed when astrocytes are being contacted with stiff materials commonly used in neural implants. A silicon nanopillar array with 500 nm inter-pillar distance was used to reveal that this inhibition of focal adhesion maturation occurs due to the surface nanoscale geometry, more precisely the inter-fiber distance. Live cell atomic force microscopy was used to confirm astrocytes being significantly softer on the long Ni-CNFs compared to other surfaces, including a soft gelatin hydrogel. We also observed hippocampal neurons to mature and form synaptic contacts when being cultured on both long and short carbon nanofibers, without having to use any adhesive proteins or a glial monoculture, indicating high cytocompatibility of the material also with neuronal population. In contrast, neurons cultured on a planar tetrahedral amorphous carbon sample showed immature neurites and indications of early-stage apoptosis. Our results demonstrate that mechanical biocompatibility of biomaterials is greatly affected by their nanoscale surface geometry, which provides means for controlling how the materials and their mechanical properties are perceived by the cells. STATEMENT OF SIGNIFICANCE: Our research article shows, how nanoscale surface geometry determines mechanical biocompatibility of apparently stiff materials. Specifically, astrocytes were prevented from obtaining highly spread morphology when their adhesion site maturation was inhibited, showing similar morphology on nominally stiff vertically aligned carbon fiber (VACNF) substrates as when being cultured on ultrasoft surfaces. Furthermore, hippocampal neurons matured well and formed synapses on these carbon nanofibers, indicating high biocompatibility of the materials. Interestingly, the same VACNF materials that were used in this study have earlier also been proven to be capable for electrophysiological recordings and sensing neurotransmitters at physiological concentrations with ultra-high sensitivity and selectivity, thus providing a platform for future neural probes or smart culturing surfaces with superior sensing performance and biocompatibility.

摘要

垂直排列的碳纳米纤维(VACNFs)由于能够检测生理浓度的神经递质,因此是神经生物传感器的有前途的候选材料。然而,CNFs 预期的高刚性可能会导致与脑组织的机械不匹配,从而在电极周围形成胶质瘢痕,从而导致功能丧失。我们通过生长不同长度和纤维间距离的镍催化碳纳米纤维来评估 VACNFs 的机械生物相容性。长纤维和大纤维间距离的长纳米纤维阻止了粘着斑的成熟,从而限制了细胞获得高度扩展的形态,当星形胶质细胞与通常用于神经植入物的刚性材料接触时,就会观察到这种形态。使用 500nm 柱间距的硅纳米柱阵列来揭示,粘着斑成熟的这种抑制是由于表面纳米级几何形状,更确切地说是纤维间距离。活细胞原子力显微镜用于确认与其他表面(包括软明胶水凝胶)相比,星形胶质细胞在长 Ni-CNFs 上明显更软,这表明表面纳米级几何形状对粘着斑成熟的抑制。我们还观察到,当在长和短碳纤维上培养时,海马神经元成熟并形成突触接触,而无需使用任何粘附蛋白或神经胶质单细胞培养物,这表明该材料与神经元群体的细胞相容性也很高。相比之下,在平面四面体非晶碳样品上培养的神经元表现出不成熟的神经突和早期凋亡的迹象。我们的结果表明,生物材料的机械生物相容性受其纳米级表面几何形状的影响很大,这为控制材料及其机械性能如何被细胞感知提供了手段。研究意义:本文研究了纳米级表面几何形状如何决定看似坚硬的材料的机械生物相容性。具体来说,当粘着斑成熟受到抑制时,星形胶质细胞被阻止获得高度扩展的形态,从而在名义上坚硬的垂直排列碳纤维(VACNF)基底上表现出与在超软表面上相似的形态。此外,这些碳纤维上的海马神经元成熟良好并形成突触,表明材料的生物相容性很高。有趣的是,在这项研究中使用的相同 VACNF 材料早些时候也被证明能够以超高灵敏度和选择性在生理浓度下进行电生理记录和检测神经递质,从而为未来的神经探针或具有卓越传感性能和生物相容性的智能培养表面提供了一个平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验