Suppr超能文献

干扰控制的神经机制是流体智力和工作记忆广度之间关系的基础。

Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span.

机构信息

Department of Psychology.

Department of Psychology, Yale University.

出版信息

J Exp Psychol Gen. 2011 Nov;140(4):674-692. doi: 10.1037/a0024695.

Abstract

Fluid intelligence (gF) and working memory (WM) span predict success in demanding cognitive situations. Recent studies show that much of the variance in gF and WM span is shared, suggesting common neural mechanisms. This study provides a direct investigation of the degree to which shared variance in gF and WM span can be explained by neural mechanisms of interference control. The authors measured performance and functional magnetic resonance imaging activity in 102 participants during the n-back WM task, focusing on the selective activation effects associated with high-interference lure trials. Brain activity on these trials was correlated with gF, WM span, and task performance in core brain regions linked to WM and executive control, including bilateral dorsolateral prefrontal cortex (middle frontal gyrus; BA9) and parietal cortex (inferior parietal cortex; BA 40/7). Interference-related performance and interference-related activity accounted for a significant proportion of the shared variance in gF and WM span. Path analyses indicate that interference control activity may affect gF through a common set of processes that also influence WM span. These results suggest that individual differences in interference-control mechanisms are important for understanding the relationship between gF and WM span.

摘要

流体智力(gF)和工作记忆(WM)跨度可预测在要求苛刻的认知情况下的成功。最近的研究表明,gF 和 WM 跨度的大部分差异是共享的,这表明存在共同的神经机制。本研究直接考察了 gF 和 WM 跨度的共享方差在多大程度上可以用干扰控制的神经机制来解释。作者在 102 名参与者进行 n-back WM 任务期间测量了表现和功能磁共振成像活动,重点关注与高干扰诱饵试验相关的选择性激活效应。这些试验的大脑活动与 gF、WM 跨度以及与 WM 和执行控制相关的核心大脑区域(双侧背外侧前额叶皮层(额中回;BA9)和顶叶皮层(顶下小叶;BA40/7))的任务表现相关。与干扰相关的表现和与干扰相关的活动解释了 gF 和 WM 跨度的共享方差的很大一部分。路径分析表明,干扰控制活动可能通过影响 WM 跨度的共同过程来影响 gF。这些结果表明,干扰控制机制的个体差异对于理解 gF 和 WM 跨度之间的关系很重要。

相似文献

2
How working memory enables fluid reasoning.
Appl Neuropsychol Child. 2017 Jul-Sep;6(3):245-247. doi: 10.1080/21622965.2017.1317490. Epub 2017 May 8.
5
Neural mechanisms of general fluid intelligence.
Nat Neurosci. 2003 Mar;6(3):316-22. doi: 10.1038/nn1014.
6
Adolescent cannabis use and brain systems supporting adult working memory encoding, maintenance, and retrieval.
Neuroimage. 2018 Apr 1;169:496-509. doi: 10.1016/j.neuroimage.2017.12.041. Epub 2017 Dec 15.
7
Neural correlates of working memory performance in adolescents and young adults with dyslexia.
Neuropsychologia. 2008 Jan 31;46(2):640-8. doi: 10.1016/j.neuropsychologia.2007.09.002. Epub 2007 Sep 12.
8
Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.
J Neurosci. 2016 Nov 16;36(46):11788-11794. doi: 10.1523/JNEUROSCI.1970-16.2016.
9
Neural mechanisms of two different verbal working memory tasks: A VLSM study.
Neuropsychologia. 2018 Jul 1;115:25-41. doi: 10.1016/j.neuropsychologia.2018.03.003. Epub 2018 Mar 8.
10
Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.
Cogn Psychol. 2014 Jun;71:1-26. doi: 10.1016/j.cogpsych.2014.01.003. Epub 2014 Feb 14.

引用本文的文献

2
Neural Mechanisms Supporting the Relationship between Working Memory Capacity and Proactive Control.
bioRxiv. 2025 May 12:2025.05.09.653198. doi: 10.1101/2025.05.09.653198.
4
Evidence for a general cognitive structure in pigeons (Columba livia).
Anim Cogn. 2024 Nov 2;27(1):74. doi: 10.1007/s10071-024-01912-3.
6
A negative emotional state impairs individuals' ability to filter distractors from working memory: an ERP study.
Cogn Affect Behav Neurosci. 2024 Jun;24(3):491-504. doi: 10.3758/s13415-024-01166-z. Epub 2024 Feb 13.
7
Visual orientation discrimination skills are tightly linked with specific aspects of human intelligence.
PLoS One. 2023 Oct 17;18(10):e0289590. doi: 10.1371/journal.pone.0289590. eCollection 2023.
8
Brain Functional Correlates of Intelligence Score in ADHD Based on EEG.
Basic Clin Neurosci. 2022 Nov-Dec;13(6):883-900. doi: 10.32598/bcn.2021.1904.1. Epub 2022 Nov 1.
9
The Domain-General Multiple Demand Network Is More Active in Early Balanced Bilinguals Than Monolinguals During Executive Processing.
Neurobiol Lang (Camb). 2021 Dec 23;2(4):647-664. doi: 10.1162/nol_a_00058. eCollection 2021.
10
Stuck on the Last: The Last-Presented Benefit as an Index of Attentional Refreshing in Adolescents.
J Intell. 2022 Dec 23;11(1):4. doi: 10.3390/jintelligence11010004.

本文引用的文献

2
Domain-general mechanisms of complex working memory span.
Neuroimage. 2011 Jan 1;54(1):550-9. doi: 10.1016/j.neuroimage.2010.07.067. Epub 2010 Aug 4.
3
The What and How of prefrontal cortical organization.
Trends Neurosci. 2010 Aug;33(8):355-61. doi: 10.1016/j.tins.2010.05.002. Epub 2010 Jun 22.
4
Testing predictions from personality neuroscience. Brain structure and the big five.
Psychol Sci. 2010 Jun;21(6):820-8. doi: 10.1177/0956797610370159. Epub 2010 Apr 30.
5
Individual differences in working memory capacity and distractor processing: possible contribution of top-down inhibitory control.
Brain Res. 2010 Jun 4;1335:63-73. doi: 10.1016/j.brainres.2010.03.088. Epub 2010 Apr 8.
6
Improving intelligence: a literature review.
Swiss Med Wkly. 2010 May;140(19-20):266-72. doi: 10.4414/smw.2010.12852.
7
8
Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect.
Soc Cogn Affect Neurosci. 2009 Dec;4(4):328-39. doi: 10.1093/scan/nsp028. Epub 2009 Dec 17.
9
Intellect as distinct from Openness: differences revealed by fMRI of working memory.
J Pers Soc Psychol. 2009 Nov;97(5):883-92. doi: 10.1037/a0016615.
10
Fluid reasoning and the developing brain.
Front Neurosci. 2009 May 1;3(1):46-51. doi: 10.3389/neuro.01.003.2009. eCollection 2009 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验