Department of Psychology.
Department of Psychology, Yale University.
J Exp Psychol Gen. 2011 Nov;140(4):674-692. doi: 10.1037/a0024695.
Fluid intelligence (gF) and working memory (WM) span predict success in demanding cognitive situations. Recent studies show that much of the variance in gF and WM span is shared, suggesting common neural mechanisms. This study provides a direct investigation of the degree to which shared variance in gF and WM span can be explained by neural mechanisms of interference control. The authors measured performance and functional magnetic resonance imaging activity in 102 participants during the n-back WM task, focusing on the selective activation effects associated with high-interference lure trials. Brain activity on these trials was correlated with gF, WM span, and task performance in core brain regions linked to WM and executive control, including bilateral dorsolateral prefrontal cortex (middle frontal gyrus; BA9) and parietal cortex (inferior parietal cortex; BA 40/7). Interference-related performance and interference-related activity accounted for a significant proportion of the shared variance in gF and WM span. Path analyses indicate that interference control activity may affect gF through a common set of processes that also influence WM span. These results suggest that individual differences in interference-control mechanisms are important for understanding the relationship between gF and WM span.
流体智力(gF)和工作记忆(WM)跨度可预测在要求苛刻的认知情况下的成功。最近的研究表明,gF 和 WM 跨度的大部分差异是共享的,这表明存在共同的神经机制。本研究直接考察了 gF 和 WM 跨度的共享方差在多大程度上可以用干扰控制的神经机制来解释。作者在 102 名参与者进行 n-back WM 任务期间测量了表现和功能磁共振成像活动,重点关注与高干扰诱饵试验相关的选择性激活效应。这些试验的大脑活动与 gF、WM 跨度以及与 WM 和执行控制相关的核心大脑区域(双侧背外侧前额叶皮层(额中回;BA9)和顶叶皮层(顶下小叶;BA40/7))的任务表现相关。与干扰相关的表现和与干扰相关的活动解释了 gF 和 WM 跨度的共享方差的很大一部分。路径分析表明,干扰控制活动可能通过影响 WM 跨度的共同过程来影响 gF。这些结果表明,干扰控制机制的个体差异对于理解 gF 和 WM 跨度之间的关系很重要。