Suppr超能文献

使用 RosettaBackrub 柔性骨架设计预测蛋白质和蛋白质界面的耐受序列。

Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

机构信息

Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America.

出版信息

PLoS One. 2011;6(7):e20451. doi: 10.1371/journal.pone.0020451. Epub 2011 Jul 18.

Abstract

Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

摘要

预测蛋白质或蛋白质界面所容忍的序列集,同时保持所需的功能,对于表征蛋白质相互作用特异性和计算设计具有新功能的序列文库以工程蛋白质是有用的。在这里,我们提供了一种通用方法、详细的协议集以及几个基准测试和分析,用于使用在 Rosetta 分子建模软件套件中实现的灵活骨架蛋白设计来估计容忍序列。该方法的输入至少是一个实验确定的三维蛋白质结构或高质量模型。使用 Monte Carlo 模拟(包括 Rosetta 中的后揉骨架和侧链移动)将起始结构(多个)扩展或细化为构象集合。然后,该方法使用模拟退火和遗传算法优化方法的组合,对集合中各个成员的低能序列进行富集。为了强调某些功能要求(例如形成结合界面),可以在评分函数中重新加权结构(例如域)之间和内部的相互作用。来自每个骨架结构的结果合并在一起,为容忍序列空间创建单个估计值。我们提供了该协议及其参数的详细描述、所有源代码、示例分析脚本以及将该方法应用于寻找预测稳定蛋白质或蛋白质界面的序列的三个测试。该方法的通用性使其能够实现许多其他应用,例如稳定与小分子、DNA 或 RNA 的相互作用。通过使用域内加权和/或多态设计,也可能使用该方法找到稳定特定蛋白质构象或结合相互作用而不是其他构象或相互作用的序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca0e/3138746/b9b689b3fb7f/pone.0020451.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验