Suppr超能文献

用于模拟和设计蛋白质替代构象的灵活主链采样方法。

Flexible backbone sampling methods to model and design protein alternative conformations.

作者信息

Ollikainen Noah, Smith Colin A, Fraser James S, Kortemme Tanja

机构信息

Graduate Program in Bioinformatics, University of California San Francisco, San Francisco, California, USA.

出版信息

Methods Enzymol. 2013;523:61-85. doi: 10.1016/B978-0-12-394292-0.00004-7.

Abstract

Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remain experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side-chain conformations, native side-chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid covariation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity.

摘要

对蛋白质的不同构象进行采样是理解蛋白质如何发挥功能以及对其进行工程改造以实现新功能的关键。然而,准确地表征和模拟蛋白质构象集合在实验和计算方面仍然具有挑战性。在蛋白质工程和设计中利用蛋白质构象异质性之前,必须应对这些挑战。在此,作为一块垫脚石,我们描述了检测蛋白质中不同构象的方法以及基于Rosetta中类似回搓的蒙特卡罗移动对这些近天然构象变化进行建模的策略。我们展示了应用回搓移动的Rosetta模拟如何改进点突变侧链构象、天然侧链构象异质性、功能构象变化、可耐受序列空间、蛋白质相互作用特异性以及蛋白质-蛋白质界面上氨基酸共变的建模。我们提供了相关的Rosetta命令行和Rosetta脚本,以鼓励将这类模拟应用于其他系统。我们的工作强调,为了近似构象景观,关键的评分和采样改进将是必要的。这些方法未来发展面临的挑战包括对远离设计突变位点传播的构象变化进行建模以及调节主链灵活性以预测性地设计功能上重要的构象异质性。

相似文献

1
Flexible backbone sampling methods to model and design protein alternative conformations.
Methods Enzymol. 2013;523:61-85. doi: 10.1016/B978-0-12-394292-0.00004-7.
2
Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction.
J Mol Biol. 2008 Jul 18;380(4):742-56. doi: 10.1016/j.jmb.2008.05.023. Epub 2008 May 17.
3
Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.
PLoS One. 2011;6(7):e20451. doi: 10.1371/journal.pone.0020451. Epub 2011 Jul 18.
4
Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.
PLoS Comput Biol. 2015 Sep 23;11(9):e1004335. doi: 10.1371/journal.pcbi.1004335. eCollection 2015.
5
A simple model of backbone flexibility improves modeling of side-chain conformational variability.
J Mol Biol. 2008 Jul 18;380(4):757-74. doi: 10.1016/j.jmb.2008.05.006. Epub 2008 May 11.
6
RosettaBackrub--a web server for flexible backbone protein structure modeling and design.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W569-75. doi: 10.1093/nar/gkq369. Epub 2010 May 12.
10
A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.
PLoS Comput Biol. 2009 May;5(5):e1000393. doi: 10.1371/journal.pcbi.1000393. Epub 2009 May 29.

引用本文的文献

2
De novo protein design-From new structures to programmable functions.
Cell. 2024 Feb 1;187(3):526-544. doi: 10.1016/j.cell.2023.12.028.
4
A Minireview on Temperature Dependent Protein Conformational Sampling.
Protein J. 2021 Aug;40(4):545-553. doi: 10.1007/s10930-021-10012-x. Epub 2021 Jun 28.
5
IsAb: a computational protocol for antibody design.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab143.
7
Recent advances in de novo protein design: Principles, methods, and applications.
J Biol Chem. 2021 Jan-Jun;296:100558. doi: 10.1016/j.jbc.2021.100558. Epub 2021 Mar 18.
8
New computational protein design methods for de novo small molecule binding sites.
PLoS Comput Biol. 2020 Oct 5;16(10):e1008178. doi: 10.1371/journal.pcbi.1008178. eCollection 2020 Oct.
9
Expanding the space of protein geometries by computational design of de novo fold families.
Science. 2020 Aug 28;369(6507):1132-1136. doi: 10.1126/science.abc0881.
10
FASPR: an open-source tool for fast and accurate protein side-chain packing.
Bioinformatics. 2020 Jun 1;36(12):3758-3765. doi: 10.1093/bioinformatics/btaa234.

本文引用的文献

1
Role of the biomolecular energy gap in protein design, structure, and evolution.
Cell. 2012 Apr 13;149(2):262-73. doi: 10.1016/j.cell.2012.03.016.
2
Resolving the complex role of enzyme conformational dynamics in catalytic function.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5699-704. doi: 10.1073/pnas.1117060109. Epub 2012 Mar 26.
3
Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5277-82. doi: 10.1073/pnas.1114487109. Epub 2012 Mar 7.
4
Assessment of protein structure refinement in CASP9.
Proteins. 2011;79 Suppl 10(Suppl 10):74-90. doi: 10.1002/prot.23131. Epub 2011 Aug 30.
5
Accessing protein conformational ensembles using room-temperature X-ray crystallography.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16247-52. doi: 10.1073/pnas.1111325108. Epub 2011 Sep 14.
7
Solution structure of a minor and transiently formed state of a T4 lysozyme mutant.
Nature. 2011 Aug 21;477(7362):111-4. doi: 10.1038/nature10349.
8
Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.
PLoS One. 2011;6(7):e20451. doi: 10.1371/journal.pone.0020451. Epub 2011 Jul 18.
9
RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite.
PLoS One. 2011;6(6):e20161. doi: 10.1371/journal.pone.0020161. Epub 2011 Jun 24.
10
ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules.
Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验