Suppr超能文献

基于主链集合的多状态计算蛋白质设计

Multistate Computational Protein Design with Backbone Ensembles.

作者信息

Davey James A, Chica Roberto A

机构信息

Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, Canada, K1N 6N5.

出版信息

Methods Mol Biol. 2017;1529:161-179. doi: 10.1007/978-1-4939-6637-0_7.

Abstract

The ability of computational protein design (CPD) to identify protein sequences possessing desired characteristics in vast sequence spaces makes it a highly valuable tool in the protein engineering toolbox. CPD calculations are typically performed using a single-state design (SSD) approach in which amino-acid sequences are optimized on a single protein structure. Although SSD has been successfully applied to the design of numerous protein functions and folds, the approach can lead to the incorrect rejection of desirable sequences because of the combined use of a fixed protein backbone template and a set of rigid rotamers. This fixed backbone approximation can be addressed by using multistate design (MSD) with backbone ensembles. MSD improves the quality of predicted sequences by using ensembles approximating conformational flexibility as input templates instead of a single fixed protein structure. In this chapter, we present a step-by-step guide to the implementation and analysis of MSD calculations with backbone ensembles. Specifically, we describe ensemble generation with the PertMin protocol, execution of MSD calculations for recapitulation of Streptococcal protein G domain β1 mutant stability, and analysis of computational predictions by sequence binning. Furthermore, we provide a comparison between MSD and SSD calculation results and discuss the benefits of multistate approaches to CPD.

摘要

计算蛋白质设计(CPD)能够在庞大的序列空间中识别具有所需特性的蛋白质序列,这使其成为蛋白质工程工具箱中极具价值的工具。CPD计算通常使用单状态设计(SSD)方法进行,即在单一蛋白质结构上优化氨基酸序列。尽管SSD已成功应用于众多蛋白质功能和折叠的设计,但由于固定蛋白质主链模板和一组刚性旋转异构体的联合使用,该方法可能导致对理想序列的错误排除。这种固定主链近似可以通过使用具有主链集合的多状态设计(MSD)来解决。MSD通过使用近似构象灵活性的集合作为输入模板而非单一固定蛋白质结构,提高了预测序列的质量。在本章中,我们提供了一份使用主链集合进行MSD计算的实施和分析的分步指南。具体而言,我们描述了使用PertMin协议生成集合、执行MSD计算以重现链球菌蛋白G结构域β1突变体的稳定性,以及通过序列分类分析计算预测结果。此外,我们比较了MSD和SSD的计算结果,并讨论了多状态方法对CPD的益处。

相似文献

1
Multistate Computational Protein Design with Backbone Ensembles.
Methods Mol Biol. 2017;1529:161-179. doi: 10.1007/978-1-4939-6637-0_7.
3
Multistate approaches in computational protein design.
Protein Sci. 2012 Sep;21(9):1241-52. doi: 10.1002/pro.2128. Epub 2012 Aug 10.
5
Positive multistate protein design.
Bioinformatics. 2020 Jan 1;36(1):122-130. doi: 10.1093/bioinformatics/btz497.
7
The Framework of Computational Protein Design.
Methods Mol Biol. 2017;1529:3-19. doi: 10.1007/978-1-4939-6637-0_1.
8
Applications of Normal Mode Analysis Methods in Computational Protein Design.
Methods Mol Biol. 2017;1529:203-214. doi: 10.1007/978-1-4939-6637-0_9.
9
An efficient algorithm for multistate protein design based on FASTER.
J Comput Chem. 2010 Apr 15;31(5):904-16. doi: 10.1002/jcc.21375.
10
Dead-end elimination for multistate protein design.
J Comput Chem. 2007 Oct;28(13):2122-9. doi: 10.1002/jcc.20661.

引用本文的文献

1
Computational remodeling of an enzyme conformational landscape for altered substrate selectivity.
Nat Commun. 2023 Sep 28;14(1):6058. doi: 10.1038/s41467-023-41762-0.
2
Computational Design of Miniprotein Binders.
Methods Mol Biol. 2022;2405:361-382. doi: 10.1007/978-1-0716-1855-4_17.
3
Generation of bright monomeric red fluorescent proteins computational design of enhanced chromophore packing.
Chem Sci. 2022 Jan 11;13(5):1408-1418. doi: 10.1039/d1sc05088e. eCollection 2022 Feb 2.
4
Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
Nat Commun. 2020 Sep 23;11(1):4808. doi: 10.1038/s41467-020-18619-x.
5
Expanding the space of protein geometries by computational design of de novo fold families.
Science. 2020 Aug 28;369(6507):1132-1136. doi: 10.1126/science.abc0881.
7
Multi-state design of flexible proteins predicts sequences optimal for conformational change.
PLoS Comput Biol. 2020 Feb 7;16(2):e1007339. doi: 10.1371/journal.pcbi.1007339. eCollection 2020 Feb.
8
Computational design of a modular protein sense-response system.
Science. 2019 Nov 22;366(6468):1024-1028. doi: 10.1126/science.aax8780.
9
Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions.
Proteins. 2020 Jan;88(1):206-226. doi: 10.1002/prot.25790. Epub 2019 Aug 10.
10
Rational design of proteins that exchange on functional timescales.
Nat Chem Biol. 2017 Dec;13(12):1280-1285. doi: 10.1038/nchembio.2503. Epub 2017 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验