Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
PLoS One. 2011;6(7):e22006. doi: 10.1371/journal.pone.0022006. Epub 2011 Jul 18.
Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.
研究人员将本体设计为一种在异构和不同的数据和知识库中准确注释和集成实验数据的方法。形式本体使术语和关系的语义变得明确,从而可以使用自动推理来验证知识的一致性。然而,许多生物医学本体并没有充分形式化其关系的语义,因此在大规模数据集成和知识发现方面的自动推理受到限制。我们描述了一种改进生物医学本体的自动推理的方法,并识别了数千个矛盾的类定义。我们的方法将生物医学本体中的术语与顶级本体中的基础类对齐,并将组合关系形式化为类表达式。我们描述了对矛盾的半自动修复,并演示了在可互操作本体上的表达查询。我们的工作为基于知识的正式表示的数据集成、自动推理和知识发现奠定了重要基础。我们的结果和分析软件可在 http://bioonto.de/pmwiki.php/Main/ReasonableOntologies 上获得。