Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
J Am Chem Soc. 2011 Sep 7;133(35):13957-66. doi: 10.1021/ja2036767. Epub 2011 Aug 12.
Carbohydrates are integral to biological signaling networks and cell-cell interactions, yet the detection of discrete carbohydrate-lectin interactions remains difficult since binding is generally weak. A strategy to overcome this problem is to create multivalent sensors, where the avidity rather than the affinity of the interaction is important. Here we describe the development of a series of multivalent sensors that self-assemble via hydrophobic supramolecular interactions. The multivalent sensors are comprised of a fluorescent ruthenium(II) core surrounded by a heptamannosylated β-cyclodextrin scaffold. Two additional series of complexes were synthesized as proof-of-principle for supramolecular self-assembly, the fluorescent core alone and the core plus β-cyclodextrin. Spectroscopic analyses confirmed that the three mannosylated sensors displayed 14, 28, and 42 sugar units, respectively. Each complex adopted original and unique spatial arrangements. The sensors were used to investigate the influence of carbohydrate spatial arrangement and clustering on the mechanistic and qualitative properties of lectin binding. Simple visualization of binding between a fluorescent, multivalent mannose complex and the Escherichia coli strain ORN178 that possesses mannose-specific receptor sites illustrates the potential for these complexes as biosensors.
碳水化合物是生物信号网络和细胞-细胞相互作用的组成部分,但由于结合通常较弱,因此难以检测到离散的碳水化合物-凝集素相互作用。克服这个问题的一种策略是创建多价传感器,其中重要的是相互作用的亲合力而不是亲和力。在这里,我们描述了一系列通过疏水性超分子相互作用自组装的多价传感器的开发。多价传感器由荧光钌(II)核组成,周围是七甘露糖基化的β-环糊精支架。还合成了另外两个系列的配合物作为超分子自组装的原理证明,即单独的荧光核和核加β-环糊精。光谱分析证实,这三种甘露糖传感器分别显示出 14、28 和 42 个糖单位。每个配合物都采用了原始和独特的空间排列。这些传感器用于研究碳水化合物空间排列和聚集对凝集素结合的机制和定性性质的影响。荧光、多价甘露糖配合物与具有特定甘露糖受体的大肠杆菌菌株 ORN178 之间结合的简单可视化说明了这些配合物作为生物传感器的潜力。