Center of Rapid Evolution (CORE), University of Wisconsin, 430 Lincoln Drive, Birge Hall, Madison, Wisconsin 53706, USA.
Evolution. 2011 Aug;65(8):2229-44. doi: 10.1111/j.1558-5646.2011.01308.x. Epub 2011 Apr 27.
Marine to freshwater colonizations constitute among the most dramatic evolutionary transitions in the history of life. This study examined evolution of ionic regulation following saline-to-freshwater transitions in an invasive species. In recent years, the copepod Eurytemora affinis has invaded freshwater habitats multiple times independently. We found parallel evolutionary shifts in ion-motive enzyme activity (V-type H(+) ATPase, Na(+) /K(+) -ATPase) across independent invasions and in replicate laboratory selection experiments. Freshwater populations exhibited increased V-type H(+) ATPase activity in fresh water (0 PSU) and declines at higher salinity (15 PSU) relative to saline populations. This shift represented marked evolutionary increases in plasticity. In contrast, freshwater populations displayed reduced Na(+) /K(+) -ATPase activity across all salinities. Most notably, modifying salinity alone during laboratory selection experiments recapitulated the evolutionary shifts in V-type H(+) ATPase activity observed in nature. Maternal and embryonic acclimation could not account for the observed shifts in enzyme activity. V-type H(+) ATPase function has been hypothesized to be critical for freshwater and terrestrial adaptations, but evolution of this enzyme function had not been previously demonstrated in the context of habitat transitions. Moreover, the speed of these evolutionary shifts was remarkable, within a few generations in the laboratory and a few decades in the wild.
海洋到淡水的移居是生命史上最显著的进化转变之一。本研究探讨了在一种入侵物种的盐度到淡水的转变后,离子调节的进化。近年来,桡足类动物 Eurytemora affinis 已经多次独立地入侵淡水生境。我们发现,离子动力酶活性(V 型 H(+) ATPase、Na(+) / K(+) -ATPase)在独立的入侵和重复的实验室选择实验中都发生了平行的进化变化。与盐水种群相比,淡水种群在淡水中(0 PSU)表现出增加的 V 型 H(+) ATPase 活性,而在更高的盐度(15 PSU)下则下降。这种转变代表了明显的进化可塑性增加。相比之下,淡水种群在所有盐度下均表现出 Na(+) / K(+) -ATPase 活性降低。最值得注意的是,在实验室选择实验中仅改变盐度就可以重现自然中观察到的 V 型 H(+) ATPase 活性的进化变化。母体和胚胎适应不能解释观察到的酶活性变化。V 型 H(+) ATPase 的功能被假设对淡水和陆地适应至关重要,但在栖息地转变的背景下,该酶功能的进化尚未得到证明。此外,这些进化变化的速度非常惊人,在实验室中只需几代,在野外只需几十年。