Department of Anesthesiology Medical College of Wisconsin, Milwaukee, WI, USA.
J Mol Cell Cardiol. 2011 Nov;51(5):803-11. doi: 10.1016/j.yjmcc.2011.06.026. Epub 2011 Jul 21.
Endothelial cells (EC) serve a paracrine function to enhance signaling in cardiomyocytes (CM), and conversely, CM secrete factors that impact EC function. Understanding how EC interact with CM may be critically important in the context of ischemia-reperfusion injury, where EC might promote CM survival. We used isoflurane as a pharmacological stimulus to enhance EC protection of CM against hypoxia and reoxygenation injury. Triggering of intracellular signal transduction pathways culminating in the enhanced production of nitric oxide (NO) appears to be a central component of pharmacologically induced cardioprotection. Although the endothelium is well recognized as a regulator for vascular tone, little attention has been given to its potential importance in mediating cardioprotection. In the current investigation, EC-CM in co-culture were used to test the hypothesis that EC contribute to isoflurane-enhanced protection of CM against hypoxia and reoxygenation injury and that this protection depends on hypoxia-inducible factor (HIF1α) and NO. CM were protected against cell injury [lactate dehydrogenase (LDH) release] to a greater extent in the presence vs. absence of isoflurane-stimulated EC (1.7 ± 0.2 vs. 4.58 ± 0.8 fold change LDH release), and this protection was NO-dependent. Isoflurane enhanced release of NO in EC (1103 ± 58 vs. 702 ± 92 pmol/mg protein) and EC-CM in co-culture sustained NO release during reoxygenation. In contrast, lentiviral mediated HIF1α knockdown in EC decreased basal and isoflurane stimulated NO release in an eNOS dependent manner (517 ± 32 vs. 493 ± 38 pmol/mg protein) and prevented the sustained increase in NO during reoxygenation when co-cultured. Opening of mitochondrial permeability transition pore (mPTP), an index of mitochondrial integrity, was delayed in the presence vs. absence of EC (141 ± 2 vs. 128 ± 2.5 arbitrary mPTP opening time). Isoflurane stimulated an increase in HIF1α in EC but not in CM under normal oxygen tension (3.5 ± 0.1 vs. 0.79 ± 0.15 fold change density) and this action was blocked by pretreatment with the Mitogen-activated Protein/Extracellular Signal-regulated Kinase inhibitor U0126. Expression and nuclear translocation of HIF1α were confirmed by Western blot and immunofluorescence. Taken together, these data support the concept that EC are stimulated by isoflurane to produce important cardioprotective factors that may contribute to protection of myocardium during ischemia and reperfusion injury.
内皮细胞 (EC) 发挥旁分泌作用,增强心肌细胞 (CM) 的信号转导,反之,CM 分泌的因子也会影响 EC 的功能。了解 EC 与 CM 的相互作用在缺血再灌注损伤的情况下可能至关重要,因为 EC 可能促进 CM 的存活。我们使用异氟烷作为药理学刺激物来增强 EC 对 CM 缺氧和再氧合损伤的保护作用。细胞内信号转导途径的触发,最终导致一氧化氮 (NO) 的产生增加,似乎是药理学诱导的心脏保护的一个核心组成部分。尽管内皮细胞被公认为血管张力的调节剂,但很少有人关注其在介导心脏保护方面的潜在重要性。在当前的研究中,使用 EC-CM 共培养来检验以下假设:EC 有助于异氟烷增强 CM 对缺氧和再氧合损伤的保护作用,并且这种保护作用依赖于缺氧诱导因子 (HIF1α) 和 NO。与不存在异氟烷刺激的 EC 相比,CM 受到的细胞损伤(乳酸脱氢酶 (LDH) 释放)程度更小[1.7±0.2 倍 vs. 4.58±0.8 倍 LDH 释放],并且这种保护作用依赖于 NO。异氟烷增强了 EC 中 NO 的释放(1103±58 比 702±92 pmol/mg 蛋白),并且 EC-CM 共培养在再氧合过程中维持了 NO 的持续释放。相比之下,慢病毒介导的 HIF1α 在 EC 中的敲低以 eNOS 依赖的方式降低了基础和异氟烷刺激的 NO 释放(517±32 比 493±38 pmol/mg 蛋白),并阻止了再氧合时 NO 的持续增加。线粒体通透性转换孔 (mPTP) 的开放,即线粒体完整性的指标,在存在 EC 的情况下延迟(141±2 比 128±2.5 任意 mPTP 开放时间)。在正常氧张力下,异氟烷刺激 EC 中 HIF1α 的增加,但不刺激 CM(3.5±0.1 比 0.79±0.15 倍密度),该作用被丝裂原激活蛋白/细胞外信号调节激酶抑制剂 U0126 预处理所阻断。Western blot 和免疫荧光证实了 HIF1α 的表达和核易位。综上所述,这些数据支持这样的概念,即异氟烷刺激 EC 产生重要的心脏保护因子,可能有助于在缺血和再灌注损伤期间保护心肌。