Suppr超能文献

蛋白质模型拟合物的结构精修需要精确的侧链放置。

Structure refinement of protein model decoys requires accurate side-chain placement.

机构信息

Department of Cell Biology and Biochemistry, USAMRIID, Frederick, Maryland 21702, USA.

出版信息

Proteins. 2013 Mar;81(3):469-78. doi: 10.1002/prot.24204. Epub 2012 Nov 12.

Abstract

In this study, the application of temperature-based replica-exchange (T-ReX) simulations for structure refinement of decoys taken from the I-TASSER dataset was examined. A set of eight nonredundant proteins was investigated using self-guided Langevin dynamics (SGLD) with a generalized Born implicit solvent model to sample conformational space. For two of the protein test cases, a comparison of the SGLD/T-ReX method with that of a hybrid explicit/implicit solvent molecular dynamics T-ReX simulation model is provided. Additionally, the effect of side-chain placement among the starting decoy structures, using alternative rotamer conformations taken from the SCWRL4 modeling program, was investigated. The simulation results showed that, despite having near-native backbone conformations among the starting decoys, the determinant of their refinement is side-chain packing to a level that satisfies a minimum threshold of native contacts to allow efficient excursions toward the downhill refinement regime on the energy landscape. By repacking using SCWRL4 and by applying the RWplus statistical potential for structure identification, the SGLD/T-ReX simulations achieved refinement to an average of 38% increase in the number of native contacts relative to the original I-TASSER decoy sets and a 25% reduction in values of C(α) root-mean-square deviation. The hybrid model succeeded in obtaining a sharper funnel to low-energy states for a modeled target than the implicit solvent SGLD model; yet, structure identification remained roughly the same. Without meeting a threshold of near-native packing of side chains, the T-ReX simulations degrade the accuracy of the decoys, and subsequently, refinement becomes tantamount to the protein folding problem.

摘要

在这项研究中,考察了基于温度的复制交换(T-ReX)模拟在从 I-TASSER 数据集提取的诱饵结构精修中的应用。使用具有广义 Born 隐溶剂模型的自导朗之万动力学(SGLD)对八组非冗余蛋白质进行了研究,以采样构象空间。对于两个蛋白质测试案例,提供了 SGLD/T-ReX 方法与混合显式/隐式溶剂分子动力学 T-ReX 模拟模型的比较。此外,还研究了使用来自 SCWRL4 建模程序的替代旋转构象在起始诱饵结构之间放置侧链的效果。模拟结果表明,尽管起始诱饵中具有接近天然的骨架构象,但决定其精修的是侧链堆积程度,这种堆积程度满足天然接触的最小阈值,以允许在能量景观上高效地向下坡精修区域移动。通过使用 SCWRL4 重新包装并应用 RWplus 统计势能进行结构识别,SGLD/T-ReX 模拟实现了相对于原始 I-TASSER 诱饵集的平均增加 38%的天然接触数的精修,并且 C(α)均方根偏差值降低了 25%。与隐溶剂 SGLD 模型相比,混合模型成功地为模型目标获得了更尖锐的通向低能状态的漏斗;然而,结构识别大致相同。如果没有满足侧链近天然堆积的阈值,T-ReX 模拟会降低诱饵的准确性,随后的精修就相当于蛋白质折叠问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验