Suppr超能文献

基于模型的最佳呼气末正压通气在重症监护病房机械通气的急性呼吸窘迫综合征患者中的应用。

Model-based optimal PEEP in mechanically ventilated ARDS patients in the intensive care unit.

机构信息

Department of Mechanical Engineering, College of Engineering, University of Canterbury, Private Bag 8140, Christchurch, New Zealand.

出版信息

Biomed Eng Online. 2011 Jul 27;10:64. doi: 10.1186/1475-925X-10-64.

Abstract

BACKGROUND

The optimal level of positive end-expiratory pressure (PEEP) is still widely debated in treating acute respiratory distress syndrome (ARDS) patients. Current methods of selecting PEEP only provide a range of values and do not provide unique patient-specific solutions. Model-based methods offer a novel way of using non-invasive pressure-volume (PV) measurements to estimate patient recruitability. This paper examines the clinical viability of such models in pilot clinical trials to assist therapy, optimise patient-specific PEEP, assess the disease state and response over time.

METHODS

Ten patients with acute lung injury or ARDS underwent incremental PEEP recruitment manoeuvres. PV data was measured at increments of 5 cmH2O and fitted to the recruitment model. Inspiratory and expiratory breath holds were performed to measure airway resistance and auto-PEEP. Three model-based metrics are used to optimise PEEP based on opening pressures, closing pressures and net recruitment. ARDS status was assessed by model parameters capturing recruitment and compliance.

RESULTS

Median model fitting error across all patients for inflation and deflation was 2.8% and 1.02% respectively with all patients experiencing auto-PEEP. In all three metrics' cases, model-based optimal PEEP was higher than clinically selected PEEP. Two patients underwent multiple recruitment manoeuvres over time and model metrics reflected and tracked the state or their ARDS.

CONCLUSIONS

For ARDS patients, the model-based method presented in this paper provides a unique, non-invasive method to select optimal patient-specific PEEP. In addition, the model has the capability to assess disease state over time using these same models and methods.

摘要

背景

在治疗急性呼吸窘迫综合征(ARDS)患者时,正压呼气末压(PEEP)的最佳水平仍存在广泛争议。目前选择 PEEP 的方法仅提供了一个范围值,而不能提供针对特定患者的独特解决方案。基于模型的方法提供了一种使用无创压力-容积(PV)测量来估计患者可复张性的新方法。本文探讨了这些模型在试点临床试验中的临床可行性,以辅助治疗、优化患者特定的 PEEP、评估疾病状态和随时间的反应。

方法

10 名患有急性肺损伤或 ARDS 的患者接受了递增 PEEP 复张操作。PV 数据以 5cmH2O 的增量进行测量,并拟合到复张模型中。进行吸气和呼气暂停以测量气道阻力和自动 PEEP。使用基于开放压力、关闭压力和净复张的三个模型指标来优化 PEEP。通过捕获复张和顺应性的模型参数来评估 ARDS 状态。

结果

所有患者的充气和放气的模型拟合误差中位数分别为 2.8%和 1.02%,所有患者均经历自动 PEEP。在所有三个指标的情况下,基于模型的最佳 PEEP 均高于临床选择的 PEEP。两名患者随时间多次进行复张操作,模型指标反映并跟踪了他们的 ARDS 状态。

结论

对于 ARDS 患者,本文提出的基于模型的方法为选择最佳患者特定 PEEP 提供了一种独特的无创方法。此外,该模型还具有使用相同模型和方法随时间评估疾病状态的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9693/3167768/be85be997643/1475-925X-10-64-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验