Suppr超能文献

人类肌肉的高效率:反常还是机会?

High efficiency in human muscle: an anomaly and an opportunity?

机构信息

University of Washington, Seattle, WA 98195-7115, USA.

出版信息

J Exp Biol. 2011 Aug 15;214(Pt 16):2649-53. doi: 10.1242/jeb.052985.

Abstract

Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca(2+) cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca(2+) cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo.

摘要

人类肌肉在体内能高效运作吗?动物肌肉在体外的收缩耦联效率通常低于 50%,但最近的一项研究报告称,人手的第一背侧骨间(FDI)肌肉在体内的效率值为 68%。我们研究了两个可能导致这一明显高效率值的关键因素:(1)将横桥功转移到机械功,以及(2)利用弹性能来完成外部功。我们的分析支持了高收缩效率,反映了肌肉到机械功的几乎完全转移,没有弹性能循环到机械功的贡献。我们对报告的收缩耦联效率值的调查表明,FDI 值高于体外小型动物的典型值,但在体内人体肌肉的范围内。这些高效率值支持了最近的研究,表明工作收缩中的 Ca(2+)循环成本较低,并且在重复收缩过程中成本下降。最终,我们的分析表明,FDI 肌肉在效率值方面可能是例外的,高于报告的人体肌肉的效率值。因此,FDI 肌肉在收缩耦联效率和 Ca(2+)循环成本方面可能都是例外,这使其成为研究体内肌肉收缩能量学的理想肌肉模型系统。

相似文献

1
High efficiency in human muscle: an anomaly and an opportunity?
J Exp Biol. 2011 Aug 15;214(Pt 16):2649-53. doi: 10.1242/jeb.052985.
3
A distribution-moment model of energetics in skeletal muscle.
J Biomech. 1991;24(1):21-35. doi: 10.1016/0021-9290(91)90323-f.
4
Contraction coupling efficiency of human first dorsal interosseous muscle.
J Physiol. 2008 Apr 1;586(7):1993-2002. doi: 10.1113/jphysiol.2007.146829. Epub 2008 Jan 31.
5
Advances in understanding the energetics of muscle contraction.
J Biomech. 2023 Jul;156:111669. doi: 10.1016/j.jbiomech.2023.111669. Epub 2023 Jun 5.
8
Energy turnover for Ca2+ cycling in skeletal muscle.
J Muscle Res Cell Motil. 2007;28(4-5):259-74. doi: 10.1007/s10974-007-9116-7. Epub 2007 Sep 20.
9
Muscle heat: a window into the thermodynamics of a molecular machine.
Am J Physiol Heart Circ Physiol. 2016 Feb 1;310(3):H311-25. doi: 10.1152/ajpheart.00569.2015. Epub 2015 Nov 20.

引用本文的文献

1
Generalizing the isothermal efficiency by using Gaussian distributions.
PLoS One. 2023 Jan 10;18(1):e0279758. doi: 10.1371/journal.pone.0279758. eCollection 2023.
2
Neurophysics Assessment of the Muscle Bioenergy Generated by Transcranial Magnetic Stimulation.
Research (Wash D C). 2019 Mar 26;2019:7109535. doi: 10.34133/2019/7109535. eCollection 2019.
4
Limit to steady-state aerobic power of skeletal muscles.
J Biol Phys. 2018 Dec;44(4):619-646. doi: 10.1007/s10867-018-9510-y. Epub 2018 Oct 2.
5
Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance.
J Exp Biol. 2016 Jan;219(Pt 2):243-9. doi: 10.1242/jeb.126623.
6
What limits performance during whole-body incremental exercise to exhaustion in humans?
J Physiol. 2015 Oct 15;593(20):4631-48. doi: 10.1113/JP270487. Epub 2015 Sep 14.
7
Muscle force, work and cost: a novel technique to revisit the Fenn effect.
J Exp Biol. 2015 Jul;218(Pt 13):2075-82. doi: 10.1242/jeb.114512. Epub 2015 May 11.
8
Attempting to better define "intensity" for muscular performance: is it all wasted effort?
Eur J Appl Physiol. 2012 Dec;112(12):4183-5; author reply 4187-8. doi: 10.1007/s00421-012-2463-0. Epub 2012 Sep 28.

本文引用的文献

1
Is the efficiency of mammalian (mouse) skeletal muscle temperature dependent?
J Physiol. 2010 Oct 1;588(Pt 19):3819-31. doi: 10.1113/jphysiol.2010.192799.
2
Architectural properties of the first dorsal interosseous muscle.
J Anat. 2010 Apr;216(4):463-9. doi: 10.1111/j.1469-7580.2009.01196.x. Epub 2010 Jan 7.
3
Inferring crossbridge properties from skeletal muscle energetics.
Prog Biophys Mol Biol. 2010 Jan;102(1):53-71. doi: 10.1016/j.pbiomolbio.2009.10.003. Epub 2009 Oct 27.
4
Neural control of shortening and lengthening contractions: influence of task constraints.
J Physiol. 2008 Dec 15;586(24):5853-64. doi: 10.1113/jphysiol.2008.160747. Epub 2008 Oct 27.
5
Mitochondrial function in vivo: spectroscopy provides window on cellular energetics.
Methods. 2008 Dec;46(4):312-8. doi: 10.1016/j.ymeth.2008.10.001. Epub 2008 Oct 16.
6
Contraction coupling efficiency of human first dorsal interosseous muscle.
J Physiol. 2008 Apr 1;586(7):1993-2002. doi: 10.1113/jphysiol.2007.146829. Epub 2008 Jan 31.
7
Variable gearing in pennate muscles.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50. doi: 10.1073/pnas.0709212105. Epub 2008 Jan 29.
8
Relationship between force and speed in the human muscle.
J Physiol. 1949 Mar 1;108(1):Proc., 7.
9
Energy turnover for Ca2+ cycling in skeletal muscle.
J Muscle Res Cell Motil. 2007;28(4-5):259-74. doi: 10.1007/s10974-007-9116-7. Epub 2007 Sep 20.
10
THE PROGRESS OF PHYSIOLOGY.
Science. 1929 Aug 30;70(1809):200-4. doi: 10.1126/science.70.1809.200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验