Suppr超能文献

基于规则的修剪和酵母蛋白质-蛋白质相互作用网络中必需蛋白质的计算机识别。

Rule-Based Pruning and In Silico Identification of Essential Proteins in Yeast PPIN.

机构信息

Department of Computer Science & Engineering, Dr. Sudhir Chandra Sur Degree Engineering College, 540, Dum Dum Road, Near Dum Dum Jn. Station, Surermath, Kolkata 700074, India.

Department of Computer Science & Engineering, Institute of Engineering & Management, Salt Lake Electronics Complex, Kolkata 700091, India.

出版信息

Cells. 2022 Aug 25;11(17):2648. doi: 10.3390/cells11172648.

Abstract

Proteins are vital for the significant cellular activities of living organisms. However, not all of them are essential. Identifying essential proteins through different biological experiments is relatively more laborious and time-consuming than the computational approaches used in recent times. However, practical implementation of conventional scientific methods sometimes becomes challenging due to poor performance impact in specific scenarios. Thus, more developed and efficient computational prediction models are required for essential protein identification. An effective methodology is proposed in this research, capable of predicting essential proteins in a refined yeast protein-protein interaction network (PPIN). The rule-based refinement is done using protein complex and local interaction density information derived from the neighborhood properties of proteins in the network. Identification and pruning of non-essential proteins are equally crucial here. In the initial phase, careful assessment is performed by applying node and edge weights to identify and discard the non-essential proteins from the interaction network. Three cut-off levels are considered for each node and edge weight for pruning the non-essential proteins. Once the PPIN has been filtered out, the second phase starts with two centralities-based approaches: (1) local interaction density (LID) and (2) local interaction density with protein complex (LIDC), which are successively implemented to identify the essential proteins in the yeast PPIN. Our proposed methodology achieves better performance in comparison to the existing state-of-the-art techniques.

摘要

蛋白质对于生物的重要细胞活动至关重要。然而,并非所有蛋白质都是必需的。通过不同的生物实验来识别必需蛋白质比近年来使用的计算方法更加费力和耗时。然而,由于在特定场景中的性能影响较差,传统科学方法的实际实施有时会变得具有挑战性。因此,需要更先进和高效的计算预测模型来识别必需蛋白质。本研究提出了一种有效的方法,能够在精细的酵母蛋白质-蛋白质相互作用网络 (PPIN) 中预测必需蛋白质。基于规则的细化是使用从网络中蛋白质的邻域属性中获得的蛋白质复合物和局部相互作用密度信息来完成的。在此,识别和剔除非必需蛋白质同样至关重要。在初始阶段,通过应用节点和边权重来仔细评估,以从相互作用网络中识别和剔除非必需蛋白质。对于每个节点和边权重,考虑了三个截止水平来剔除非必需蛋白质。一旦过滤掉 PPIN,第二阶段就开始使用两种基于中心度的方法:(1)局部相互作用密度 (LID) 和 (2) 带有蛋白质复合物的局部相互作用密度 (LIDC),它们依次用于识别酵母 PPIN 中的必需蛋白质。与现有的最先进技术相比,我们提出的方法在性能方面表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a76/9454873/f03917b09b3a/cells-11-02648-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验