da Costa Diogo Ricardo, Dettmann Carl P, Leonel Edson D
Departamento de Estatística, Matemática Aplicada e Computação, UNESP-Universidade Estadual Paulista, Avenida 24A, 1515 CEP 13506-900, Rio Claro, São Paulo, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066211. doi: 10.1103/PhysRevE.83.066211. Epub 2011 Jun 22.
We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space.
我们研究了包含一个随时间变化的势阱的无限势箱内非相互作用粒子系综的逃逸情况。每个粒子的动力学由能量和时间变量的二维非线性面积守恒映射描述,从而导致混合相空间。相空间中的混沌海围绕着周期岛,并由一组不变的跨越曲线限定。当在能量轴上引入一个孔时,我们观察到粒子逃逸频率的直方图具有标度不变性,它迅速增长直至达到最大值,然后在足够长的时间内降至零。观察到粒子在动力学中的存活概率随时间的变化曲线在短时间内呈指数形式,达到一个交叉时间后转向较慢衰减 regime,这是由于在相空间中观察到的粘性区域所致。