de Oliveira Juliano A, Dettmann Carl P, da Costa Diogo R, Leonel Edson D
Departamento de Física, UNESP, Universidade Estadual Paulista, Avenida 24A, 1515 13506-900, Rio Claro, São Paulo, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062904. doi: 10.1103/PhysRevE.87.062904. Epub 2013 Jun 10.
We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island.
我们考虑一族二维非线性保面积映射,它推广了奇里科夫标准映射并对各种周期强迫系统进行建模。作用变量以增量形式扩散,其相位由作用的负幂控制,因此对于小作用量,增量实际上是不相关的,从而在相空间中形成一个混沌海。对于较大的作用量值,相空间是混合的,并且包含一族以周期轨道为中心的椭圆岛以及不变的柯尔莫哥洛夫 - 阿诺尔德 - 莫泽(KAM)曲线。通过从具有非常低作用量的粒子系综开始,并让它们在相空间中演化直到达到某个高度(h),来考虑粒子在相空间中的输运。对于周期岛下方的混沌轨道,粒子到达(h)的存活概率由一个指数函数表征,该函数可以很好地由扩散方程的解来建模。另一方面,当(h)到达周期岛的位置时,扩散明显减慢。我们表明,当(h)到达最低KAM岛的位置时,扩散系数相对于映射的控制参数是标度不变的。