Suppr超能文献

豚鼠模型中 H3N2 流感病毒的进化。

Evolution of H3N2 influenza virus in a guinea pig model.

机构信息

Biological Mimetics, Inc., Frederick, Maryland, United States of America.

出版信息

PLoS One. 2011;6(7):e20130. doi: 10.1371/journal.pone.0020130. Epub 2011 Jul 22.

Abstract

Studies of influenza virus evolution under controlled experimental conditions can provide a better understanding of the consequences of evolutionary processes with and without immunological pressure. Characterization of evolved strains assists in the development of predictive algorithms for both the selection of subtypes represented in the seasonal influenza vaccine and the design of novel immune refocused vaccines. To obtain data on the evolution of influenza in a controlled setting, naïve and immunized Guinea pigs were infected with influenza A/Wyoming/2003 (H3N2). Virus progeny from nasal wash samples were assessed for variation in the dominant and other epitopes by sequencing the hemagglutinin (HA) gene to quantify evolutionary changes. Viral RNA from the nasal washes from infection of naïve and immune animals contained 6% and 24.5% HA variant sequences, respectively. Analysis of mutations relative to antigenic epitopes indicated that adaptive immunity played a key role in virus evolution. HA mutations in immunized animals were associated with loss of glycosylation and changes in charge and hydrophobicity in and near residues within known epitopes. Four regions of HA-1 (75-85, 125-135, 165-170, 225-230) contained residues of highest variability. These sites are adjacent to or within known epitopes and appear to play an important role in antigenic variation. Recognition of the role of these sites during evolution will lead to a better understanding of the nature of evolution which help in the prediction of future strains for selection of seasonal vaccines and the design of novel vaccines intended to stimulated broadened cross-reactive protection to conserved sites outside of dominant epitopes.

摘要

在受控实验条件下研究流感病毒的进化可以更好地了解在有免疫压力和无免疫压力的情况下进化过程的后果。进化株的特征有助于开发预测算法,用于选择季节性流感疫苗中代表的亚型和设计新型免疫重定向疫苗。为了在受控环境中获得流感进化的数据,用流感 A/Wyoming/2003(H3N2)对未感染和免疫的豚鼠进行感染。通过对血凝素(HA)基因进行测序来评估鼻洗液样本中病毒后代在主要表位和其他表位的变异情况,以量化进化变化。来自感染未感染和免疫动物的鼻洗液的病毒 RNA 分别含有 6%和 24.5%的 HA 变异序列。与抗原表位相关的突变分析表明,适应性免疫在病毒进化中起关键作用。免疫动物中的 HA 突变与糖基化丧失以及已知表位内和附近残基的电荷和疏水性变化有关。HA-1 的四个区域(75-85、125-135、165-170、225-230)包含最高变异性的残基。这些位点紧邻或位于已知表位内,似乎在抗原变异中起重要作用。在进化过程中认识到这些位点的作用将有助于更好地了解进化的性质,从而有助于预测未来用于选择季节性疫苗的菌株,并设计旨在刺激对保守表位之外的主要表位进行广泛交叉反应保护的新型疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe10/3142111/cb4eb4d32b8a/pone.0020130.g001.jpg

相似文献

1
Evolution of H3N2 influenza virus in a guinea pig model.
PLoS One. 2011;6(7):e20130. doi: 10.1371/journal.pone.0020130. Epub 2011 Jul 22.
2
Selective pressure to increase charge in immunodominant epitopes of the H3 hemagglutinin influenza protein.
J Mol Evol. 2011 Jan;72(1):90-103. doi: 10.1007/s00239-010-9405-4. Epub 2010 Nov 18.
5
Charged amino acid variability related to N-glyco -sylation and epitopes in A/H3N2 influenza: Hem -agglutinin and neuraminidase.
PLoS One. 2017 Jul 14;12(7):e0178231. doi: 10.1371/journal.pone.0178231. eCollection 2017.
8
Changed epitopes drive the antigenic drift for influenza A (H3N2) viruses.
BMC Bioinformatics. 2011 Feb 15;12 Suppl 1(Suppl 1):S31. doi: 10.1186/1471-2105-12-S1-S31.
9
Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope.
Cell Host Microbe. 2019 Jun 12;25(6):827-835.e6. doi: 10.1016/j.chom.2019.04.003. Epub 2019 May 16.

引用本文的文献

1
Passage of human-origin influenza A virus in swine tracheal epithelial cells selects for adaptive mutations in the hemagglutinin gene.
PLoS One. 2025 Aug 13;20(8):e0327096. doi: 10.1371/journal.pone.0327096. eCollection 2025.
4
Influenza antivirals and animal models.
FEBS Open Bio. 2022 Jun;12(6):1142-1165. doi: 10.1002/2211-5463.13416. Epub 2022 Apr 27.
5
Antigenic characterization of influenza and SARS-CoV-2 viruses.
Anal Bioanal Chem. 2022 Apr;414(9):2841-2881. doi: 10.1007/s00216-021-03806-6. Epub 2021 Dec 14.
10
Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.
J Gen Virol. 2016 Jun;97(6):1333-1344. doi: 10.1099/jgv.0.000457. Epub 2016 Mar 14.

本文引用的文献

1
How can vaccines against influenza and other viral diseases be made more effective?
PLoS Biol. 2010 Dec 21;8(12):e1000571. doi: 10.1371/journal.pbio.1000571.
3
Selective pressure to increase charge in immunodominant epitopes of the H3 hemagglutinin influenza protein.
J Mol Evol. 2011 Jan;72(1):90-103. doi: 10.1007/s00239-010-9405-4. Epub 2010 Nov 18.
7
Antibody recognition of a highly conserved influenza virus epitope.
Science. 2009 Apr 10;324(5924):246-51. doi: 10.1126/science.1171491. Epub 2009 Feb 26.
8
Deceptive imprinting and immune refocusing in vaccine design.
Vaccine. 2008 Nov 18;26(49):6189-99. doi: 10.1016/j.vaccine.2008.09.080. Epub 2008 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验