Department of Social Statistics, BPS-Statistics Indonesia, Jakarta, 10710, Indonesia.
School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA12BE, UK.
Lifetime Data Anal. 2024 Oct;30(4):800-826. doi: 10.1007/s10985-024-09634-x. Epub 2024 Sep 13.
Forecasting mortality rates is crucial for evaluating life insurance company solvency, especially amid disruptions caused by phenomena like COVID-19. The Lee-Carter model is commonly employed in mortality modelling; however, extensions that can encompass count data with diverse distributions, such as the Generalized Autoregressive Score (GAS) model utilizing the COM-Poisson distribution, exhibit potential for enhancing time-to-event forecasting accuracy. Using mortality data from 29 countries, this research evaluates various distributions and determines that the COM-Poisson model surpasses the Poisson, binomial, and negative binomial distributions in forecasting mortality rates. The one-step forecasting capability of the GAS model offers distinct advantages, while the COM-Poisson distribution demonstrates enhanced flexibility and versatility by accommodating various distributions, including Poisson and negative binomial. Ultimately, the study determines that the COM-Poisson GAS model is an effective instrument for examining time series data on mortality rates, particularly when facing time-varying parameters and non-conventional data distributions.
预测死亡率对于评估寿险公司的偿付能力至关重要,尤其是在 COVID-19 等现象引起的干扰下。Lee-Carter 模型常用于死亡率建模;然而,能够包含具有不同分布的计数数据的扩展模型,如利用 COM-Poisson 分布的广义自回归得分(GAS)模型,具有提高事件时间预测准确性的潜力。本研究使用来自 29 个国家的死亡率数据,评估了各种分布,结果表明,COM-Poisson 模型在预测死亡率方面优于泊松分布、二项式分布和负二项式分布。GAS 模型的一步预测能力具有明显优势,而 COM-Poisson 分布通过容纳各种分布,包括泊松分布和负二项式分布,具有更强的灵活性和多功能性。最终,研究确定 COM-Poisson GAS 模型是研究死亡率时间序列数据的有效工具,尤其是在面临时变参数和非常规数据分布时。