Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Behav Brain Res. 2012 Feb 14;227(2):470-9. doi: 10.1016/j.bbr.2011.07.012. Epub 2011 Jul 23.
Adult-born neurons are continuously generated and incorporated into the circuitry of the hippocampus throughout life in mammals. Cumulative evidence supports a physiological role for adult-born neurons, yet it not clear whether this subset of dentate granule cells makes a unique contribution to hippocampal function. Perturbation or ablation of adult hippocampal neurogenesis leads to deficits in the acquisition of learned associations or memory recall, whereas an increase in adult hippocampal neurogenesis enhances some forms of learning and memory. The observed effects thus far appear to be task-dependent, species-specific, and sensitive to the timing of manipulations. Here, we review the recent evidence correlating adult-born dentate granule cells (DGCs) with hippocampal-dependent behavior and focus on the dynamic properties of this neuronal population that may underlie its function. We further discuss a framework for future investigations of how newly integrated neurons may contribute to hippocampal processing using advanced genetic techniques with enhanced temporal resolution.
成年海马区神经元在哺乳动物的一生中持续产生并整合到海马区的回路中。累积的证据支持成年神经元的生理作用,但尚不清楚这群齿状回颗粒细胞是否对海马体功能有独特的贡献。成年海马神经发生的干扰或消融会导致学习关联的获取或记忆回忆缺陷,而成年海马神经发生的增加则增强了某些形式的学习和记忆。迄今为止观察到的影响似乎依赖于任务、物种特异性,并且对操作的时间敏感。在这里,我们回顾了最近将成年齿状回颗粒细胞 (DGC) 与海马体依赖行为相关联的证据,并重点介绍了该神经元群体的动态特性,这些特性可能是其功能的基础。我们进一步讨论了一个框架,用于使用具有增强时间分辨率的先进遗传技术,研究新整合的神经元如何有助于海马体处理。