Suppr超能文献

医院发病率数据的准确性和合并症评分作为死亡率预测指标的性能。

Accuracy of hospital morbidity data and the performance of comorbidity scores as predictors of mortality.

机构信息

School of Population Health and Clinical Practice, Discipline of Public Health, The University of Adelaide, South Australia, Australia.

出版信息

J Clin Epidemiol. 2012 Jan;65(1):107-15. doi: 10.1016/j.jclinepi.2011.03.014. Epub 2011 Jul 31.

Abstract

OBJECTIVES

The main objectives of this study were to validate the hospital morbidity data (HMD) and to compare the performance of three comorbidity adjusting methods in predicting 1-year and 5-year all-cause mortality in a male general hospital population in Western Australia (WA).

STUDY DESIGN AND SETTING

Population-based data were integrated with WA-linked data system. Deyo-Charlson Index, Enhanced-Charlson Index, and Elixhauser's method measured comorbidity. Mortality was modeled using Cox regression, and model discrimination was assessed by Harrell's C statistics.

RESULTS

The HMD were most likely to identify major comorbidities, such as cancer, myocardial infarction, diabetes mellitus, and major operations. The presence of comorbidity was independently associated with an increased risk of adverse outcomes. All models achieved acceptable levels of discrimination (Harrell's C: 0.70-0.76). The Enhanced-Charlson Index matched the Deyo-Charlson Index in predicting mortality. Elixhauser's method outperformed the other two. Including information from past admissions achieved nonsignificant improvement in model discrimination. A dose-response effect was observed in the effect of repeated episodes on risk of 5-year mortality.

CONCLUSION

Comorbidities diagnosed at different points in time may have different associations with the risk of adverse outcomes. More research is required to integrate the effect of repeated episodes in currently used methods that measure and adjust for comorbidity.

摘要

目的

本研究的主要目的是验证医院发病率数据(HMD),并比较三种共病调整方法在预测西澳大利亚(WA)一家男性综合医院人群 1 年和 5 年全因死亡率方面的表现。

研究设计和设置

基于人群的数据与 WA 相关数据系统相结合。Deyo-Charlson 指数、增强型 Charlson 指数和 Elixhauser 方法测量共病。使用 Cox 回归模型来预测死亡率,并用 Harrell 的 C 统计量评估模型的区分度。

结果

HMD 最有可能识别出主要的合并症,如癌症、心肌梗死、糖尿病和大手术。共病的存在与不良结局的风险增加独立相关。所有模型都达到了可接受的区分度水平(Harrell 的 C:0.70-0.76)。增强型 Charlson 指数与 Deyo-Charlson 指数在预测死亡率方面相当。Elixhauser 方法优于其他两种方法。包含过去住院信息对模型区分度的提高没有显著影响。在重复发作对 5 年死亡率风险的影响中观察到剂量反应效应。

结论

在不同时间点诊断的共病可能与不良结局的风险有不同的关联。需要进一步研究,以整合目前用于测量和调整共病的方法中重复发作的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验