Biology Department, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
J Bacteriol. 2011 Oct;193(19):5062-72. doi: 10.1128/JB.05683-11. Epub 2011 Jul 29.
During transmembrane signaling by Escherichia coli Tsr, changes in ligand occupancy in the periplasmic serine-binding domain promote asymmetric motions in a four-helix transmembrane bundle. Piston displacements of the signaling TM2 helix in turn modulate the HAMP bundle on the cytoplasmic side of the membrane to control receptor output signals to the flagellar motors. A five-residue control cable joins TM2 to the HAMP AS1 helix and mediates conformational interactions between them. To explore control cable structural features important for signal transmission, we constructed and characterized all possible single amino acid replacements at the Tsr control cable residues. Only a few lesions abolished Tsr function, indicating that the chemical nature and size of the control cable side chains are not individually critical for signal control. Charged replacements at I214 mimicked the signaling consequences of attractant or repellent stimuli, most likely through aberrant structural interactions of the mutant side chains with the membrane interfacial environment. Prolines at residues 214 to 217 also caused signaling defects, suggesting that the control cable has helical character. However, proline did not disrupt function at G213, the first control cable residue, which might serve as a structural transition between the TM2 and AS1 helix registers. Hydrophobic amino acids at S217, the last control cable residue, produced attractant-mimic effects, most likely by contributing to packing interactions within the HAMP bundle. These results suggest a helix extension mechanism of Tsr transmembrane signaling in which TM2 piston motions influence HAMP stability by modulating the helicity of the control cable segment.
在大肠杆菌 Tsr 的跨膜信号转导过程中,配体在周质丝氨酸结合域中的占据状态变化促进了四螺旋跨膜束的不对称运动。信号 TM2 螺旋的活塞位移进而调节膜细胞质侧的 HAMP 束,以控制受体输出信号到鞭毛马达。一个由五个残基组成的控制电缆将 TM2 与 HAMP AS1 螺旋连接起来,并介导它们之间的构象相互作用。为了探索对信号转导重要的控制电缆结构特征,我们构建并表征了 Tsr 控制电缆残基的所有可能的单个氨基酸替换。只有少数病变会使 Tsr 功能丧失,这表明控制电缆侧链的化学性质和大小对于信号控制并不是单独关键的。在 I214 处的带电荷替换模拟了吸引或排斥刺激的信号后果,很可能是通过突变侧链与膜界面环境的异常结构相互作用。残基 214 到 217 处的脯氨酸也引起了信号缺陷,表明控制电缆具有螺旋特征。然而,脯氨酸在第一个控制电缆残基 G213 处没有破坏功能,这可能是 TM2 和 AS1 螺旋寄存器之间的结构转换。最后一个控制电缆残基 S217 处的疏水性氨基酸产生了吸引模拟效应,很可能是通过促进 HAMP 束内的包装相互作用。这些结果表明 Tsr 跨膜信号转导的一种螺旋延伸机制,其中 TM2 活塞运动通过调节控制电缆段的螺旋性来影响 HAMP 的稳定性。