Suppr超能文献

核苷碱基在 1,3-二烷基咪唑鎓乙酸盐离子液体中的溶解:溶解机制的 NMR 光谱学见解。

Solvation of nucleobases in 1,3-dialkylimidazolium acetate ionic liquids: NMR spectroscopy insights into the dissolution mechanism.

机构信息

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2780-157 Oeiras, Portugal.

出版信息

J Phys Chem B. 2011 Sep 15;115(36):10739-49. doi: 10.1021/jp203282k. Epub 2011 Aug 18.

Abstract

NMR studies of uracil, thymine, and adenine dissolved in 1-ethyl-3-methyl-imidazolium acetate ([C(2)mim][CH(3)COO]) and 1-butyl-3-methyl-imidazolium acetate ([C(4)mim][CH(3)COO]) show that hydrogen bonds (HB) dictate the dissolution mechanism and that both cations and anions participate in the solvation process. For that, the 1,3-dialkylimidazolium acetate ionic liquids (ILs) were considered to be bifunctional solvation ionic liquids. In the solvation of uracil and thymine, the CH(3)COO anion favors the formation of hydrogen bonds with the hydrogen atoms of the N1-H and N3-H groups of the nucleobases, while the aromatic protons in the bulky cations (C(2)mim and C(4)mim), especially the most acidic H2, interact with the oxygen atoms of the carbonyl groups. In the adenine solvation, while the CH(3)COO anion favors the formation of hydrogen bonds with the hydrogen atoms of the amino and N9-H groups of adenine, the aromatic protons in the bulky cations (C(2)mim and C(4)mim), especially the most acidic H2, prefer to interact with the unprotonated nitrogen atoms (N1, N3, and N7) of adenine. It is clearly demonstrated that hydrogen bonding is the major driving force in the dissolution of nucleobases in 1,3-dialkylimidazolium acetate ILs. Our results show that the ionic liquid must be a good hydrogen bond acceptor and a moderate hydrogen bond donor to dissolve nucleic acid bases. To strengthen the evidence of the proposed mechanism, NMR studies in the absence of deuterated cosolvents have been used, because the use of deuterated solvents could seriously hinder the dissolving capability of the IL for nucleobases.

摘要

NMR 研究表明,将尿嘧啶、胸腺嘧啶和腺嘌呤溶解在 1-乙基-3-甲基咪唑乙酸盐([C(2)mim][CH(3)COO])和 1-丁基-3-甲基咪唑乙酸盐([C(4)mim][CH(3)COO])中时,氢键(HB)决定了溶解机制,且阳离子和阴离子都参与了溶剂化过程。因此,1,3-二烷基咪唑乙酸盐离子液体(ILs)被认为是双功能溶剂化离子液体。在尿嘧啶和胸腺嘧啶的溶剂化过程中,CH(3)COO阴离子倾向于与碱基的 N1-H 和 N3-H 基团的氢原子形成氢键,而大体积阳离子(C(2)mimC(4)mim)中的芳香质子,特别是最酸性的 H2,与羰基的氧原子相互作用。在腺嘌呤的溶剂化过程中,CH(3)COO阴离子倾向于与腺嘌呤的氨基和 N9-H 基团的氢原子形成氢键,而大体积阳离子(C(2)mimC(4)mim)中的芳香质子,特别是最酸性的 H2,优先与腺嘌呤的未质子化氮原子(N1、N3 和 N7)相互作用。这清楚地表明氢键是碱基在 1,3-二烷基咪唑乙酸盐 ILs 中溶解的主要驱动力。我们的结果表明,离子液体必须是良好的氢键受体和适度的氢键供体,才能溶解核酸碱基。为了加强所提出的机制的证据,使用了不存在氘代共溶剂的 NMR 研究,因为使用氘代溶剂可能严重阻碍 IL 对碱基的溶解能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验