Institute of High Performance Computing, Singapore, Republic of Singapore.
J Phys Chem B. 2012 Jan 12;116(1):296-304. doi: 10.1021/jp206748z. Epub 2011 Dec 19.
Extraction of amino acids from aqueous solutions with ionic liquids (ILs) in biphasic systems is analyzed with molecular dynamics (MD) simulations. Extraction of tryptophan (TRP) with the imidazolium-based ILs [C(4)mim][PF(6)], [C(8)mim][PF(6)], and [C(8)mim][BF(4)] are considered as model cases. Solvation free energies of TRP are calculated with MD simulations and thermodynamic integration in combination with an empirical force field, whose parametrization is based on the liquid-phase charge distribution of the ILs. Calculated solvation free energies reproduce successfully all observed experimental trends according to the previously reported partition of TRP between water and IL phases. Water is present in ILs as a cosolvent, due to direct contact with the aqueous phase during extraction, and is found to play a major role in the extraction of TRP. Water improves solvation of cationic TRP by 7.8 and 5.1 kcal/mol in [C(4)mim][PF(6)] and [C(8)mim][PF(6)], respectively, which is in the case of [C(4)mim][PF(6)] sufficient to extract TRP. Extraction in [C(8)mim][PF(6)] is not feasible, since the hydrophobic octyl groups of the cations limit the water concentration in the IL. The solvation of cationic TRP is 2.4 kcal/mol less favorable in [C(8)mim][PF(6)] than in [C(4)mim][PF(6)]. Water improves the solvation of TRP in ILs mostly through dipole-dipole interactions with the polar backbone of TRP. Extraction is most efficient with [C(8)mim][BF(4)], where hydrophilic BF(4)(-) anions substantially increase the water concentration in the IL. Additionally, stronger direct electrostatic interactions of TRP with BF(4)(-) anions improve its solvation in the IL further. The solvation of cationic TRP in [C(8)mim][BF(4)] is 3.4 kcal/mol more favorable than in [C(8)mim][PF(6)]. Overall, the extractive power of the ILs correlates with the water saturation concentration of the IL phase, which in turn is determined by the hydrophilicity of the constituting ions. The results of this work identify relations between the extraction performance of ILs and the basic chemical properties of the ions, which provide guidelines that could contribute to the design of improved novel ILs for amino acid extraction.
采用分子动力学(MD)模拟对离子液体(ILs)在两相体系中从水溶液中萃取氨基酸进行了分析。以基于咪唑的 ILs [C(4)mim][PF(6)]、[C(8)mim][PF(6)]和[C(8)mim][BF(4)]萃取色氨酸(TRP)为例进行了研究。利用 MD 模拟和热力学积分结合经验力场计算了 TRP 的溶剂化自由能,该经验力场的参数化基于 ILs 的液相电荷分布。根据先前报道的 TRP 在水相和 IL 相之间的分配,计算得到的溶剂化自由能成功地再现了所有观察到的实验趋势。在萃取过程中,由于与水相直接接触,水作为共溶剂存在于 IL 中,并且在 TRP 的萃取中起着重要作用。水分别将阳离子 TRP 在 [C(4)mim][PF(6)]和 [C(8)mim][PF(6)]中的溶剂化程度提高了 7.8 和 5.1 kcal/mol,这足以在 [C(4)mim][PF(6)]中萃取 TRP。由于阳离子的疏水性辛基基团限制了 IL 中的水浓度,因此在 [C(8)mim][PF(6)]中萃取 TRP 是不可行的。阳离子 TRP 在 [C(8)mim][PF(6)]中的溶剂化程度比在 [C(4)mim][PF(6)]中低 2.4 kcal/mol。水主要通过与 TRP 的极性骨架形成偶极-偶极相互作用来提高 TRP 在 IL 中的溶剂化程度。[C(8)mim][BF(4)]的萃取效率最高,其中亲水性 BF(4)(-)阴离子会大大增加 IL 中的水浓度。此外,TRP 与 BF(4)(-)阴离子之间更强的直接静电相互作用进一步改善了其在 IL 中的溶剂化程度。阳离子 TRP 在 [C(8)mim][BF(4)]中的溶剂化程度比在 [C(8)mim][PF(6)]中有利 3.4 kcal/mol。总体而言,IL 的萃取能力与 IL 相的水饱和浓度相关,而后者又由构成离子的亲水性决定。这项工作的结果确定了 IL 萃取性能与离子基本化学性质之间的关系,为设计用于氨基酸萃取的新型改进型 IL 提供了指导。