Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
J Chem Phys. 2011 Jul 28;135(4):044128. doi: 10.1063/1.3611401.
A multiconfigurational self-consistent field method based on the concept of generalized active space (GAS) is presented. GAS wave functions are obtained by defining an arbitrary number of active spaces with arbitrary occupation constraints. By a suitable choice of the GAS spaces, numerous ineffective configurations present in a large complete active space (CAS) can be removed, while keeping the important ones in the CI space. As a consequence, the GAS self-consistent field approach retains the accuracy of the CAS self-consistent field (CASSCF) ansatz and, at the same time, can deal with larger active spaces, which would be unaffordable at the CASSCF level. Test calculations on the Gd atom, Gd(2) molecule, and oxoMn(salen) complex are presented. They show that GAS wave functions achieve the same accuracy as CAS wave functions on systems that would be prohibitive at the CAS level.
提出了一种基于广义活性空间(GAS)概念的多组态自洽场方法。通过定义任意数量的具有任意占据约束的活性空间,可以得到 GAS 波函数。通过选择合适的 GAS 空间,可以去除在大完全活性空间(CAS)中存在的大量无效构型,同时保持 CI 空间中的重要构型。因此,GAS 自洽场方法保留了 CAS 自洽场(CASSCF)假设的准确性,同时可以处理更大的活性空间,这在 CASSCF 水平上是无法承受的。本文对 Gd 原子、Gd(2)分子和氧代 Mn(salen)配合物进行了测试计算。结果表明,对于在 CAS 水平上难以处理的体系,GAS 波函数可以达到与 CAS 波函数相同的精度。