Suppr超能文献

一种基于神经网络的用于准确预测生成焓的复合方法。

A Preliminary Neural Network-Based Composite Method for Accurate Prediction of Enthalpies of Formation.

作者信息

Pereira Gabriel César, Custodio Rogério

机构信息

Instituto de Química, Universidade Estadual de Campinas Barão Geraldo, P.O. Box 6154, 13083-970 Campinas, São Paulo, Brazil.

出版信息

J Chem Theory Comput. 2024 Dec 24;20(24):10922-10930. doi: 10.1021/acs.jctc.4c01351. Epub 2024 Dec 11.

Abstract

A composite method, named ANN-G3S, is introduced, adapting from G3S theory and employing distinct sets of multiplicative scale factors. An artificial neural network (ANN)-based classification model is utilized to select optimal sets of four scale factors for electronic correlation and basis set expansion terms in electronic systems. The correlation and basis set terms are scaled by four parameters, two for atoms and the other two for molecules. The ANN model is trained on the G3/05 test set to identify the best parameter set for each electronic system. To validate the method, 10% of the structures from the test set are randomly excluded from training and optimization, forming a separate validation set. The method demonstrates a mean deviation of 1.11 kcal mol for the G3/05 set and 0.89 kcal mol for the validation set, close to the value presented by the G4 method and surpassing the accuracy of the G3 method of 1.19 kcal mol with significantly reduced computational cost. This method shows advantages by eliminating the need for purely empirical corrections, thereby enhancing both efficiency and accuracy in predicting heats of formation.

摘要

本文介绍了一种名为ANN-G3S的复合方法,该方法改编自G3S理论,并采用了不同的乘法比例因子集。利用基于人工神经网络(ANN)的分类模型为电子系统中的电子相关和基组扩展项选择四组最优比例因子。相关项和基组项由四个参数进行缩放,其中两个用于原子,另外两个用于分子。ANN模型在G3/05测试集上进行训练,以确定每个电子系统的最佳参数集。为了验证该方法,从测试集中随机排除10%的结构用于训练和优化,形成一个单独的验证集。该方法在G3/05集上的平均偏差为1.11 kcal/mol,在验证集上为0.89 kcal/mol,接近G4方法给出的值,并且以显著降低的计算成本超过了G3方法1.19 kcal/mol的精度。该方法通过无需纯经验校正而显示出优势,从而提高了预测生成热的效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c108/11672661/0b2dbed7445e/ct4c01351_0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验