Suppr超能文献

高度各向异性体系的变换松弛采样:在蛋白质结构域运动和折叠中的应用。

Transform and relax sampling for highly anisotropic systems: application to protein domain motion and folding.

机构信息

Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

出版信息

J Chem Phys. 2011 Jul 28;135(4):045101. doi: 10.1063/1.3613676.

Abstract

Transform and relax sampling (TRS) is proposed as a conformational sampling method to enhance "soft" fluctuation in highly anisotropic systems using molecular dynamics simulation. This method consists of three stages; transform, relax, and sampling. In the transform stage, molecular dynamics simulation is performed with randomly assigned force bias to enhance the fluctuations along relatively soft collective movements, as expected from the linear response theory. After relaxing the heated system to equilibrium without force bias in the relax stage, Monte Carlo-type determination is made as to whether the generated state is accepted or not. The sampling stage is then conducted for conformational sampling by conventional molecular dynamics simulation. TRS is first applied for the idealized multidimensional double-well C(α) model to mimic protein open-close transition. Subsequently, it is applied to three different all-atom protein systems in an explicit solvent model; T4 lysozyme, glutamine binding protein, and a mini-protein chignolin. Investigation of structural variations in the hinge angle of T4 lysozyme in crystals is demonstrated by TRS. The liganded close structure of the glutamine binding protein is sampled starting from the unliganded open form. Chignolin is shown to fold into a native structure multiple times starting from highly extended structures within 100 ns. It is concluded that TRS sampled a reasonable conformational space within a relatively short simulation time in these cases. Possible future extensions of TRS are also discussed.

摘要

变换弛豫采样(TRS)被提出作为一种构象采样方法,以使用分子动力学模拟增强高度各向异性系统中的“软”波动。该方法包括三个阶段:变换、弛豫和采样。在变换阶段,使用随机分配的力偏置进行分子动力学模拟,以增强沿着相对较软的集体运动的波动,这是线性响应理论所预期的。在弛豫阶段,在没有力偏置的情况下将加热的系统松弛到平衡后,通过蒙特卡罗型确定生成的状态是否被接受。然后在采样阶段通过常规分子动力学模拟进行构象采样。TRS 首先应用于理想化的多维双阱 C(α)模型,以模拟蛋白质的开-闭转变。随后,将其应用于三个不同的全原子蛋白质体系在明胶溶剂模型中:T4 溶菌酶、谷氨酸结合蛋白和小型蛋白 chignolin。通过 TRS 研究了 T4 溶菌酶在晶体中铰链角的结构变化。从非配体的开放形式开始,对谷氨酸结合蛋白的配体闭合结构进行采样。结果表明,chignolin 可以从高度伸展的结构在 100ns 内多次折叠成天然结构。结论是,在这些情况下,TRS 在相对较短的模拟时间内采样了合理的构象空间。还讨论了 TRS 的可能未来扩展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验