Klotz F, Huebl H, Heiss D, Klein K, Finley J J, Brandt M S
Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, 85748 Garching, Germany.
Rev Sci Instrum. 2011 Jul;82(7):074707. doi: 10.1063/1.3608110.
We report on the development and testing of a coplanar stripline antenna that is designed for integration in a magneto-photoluminescence experiment to allow coherent control of individual electron spins confined in single self-assembled semiconductor quantum dots. We discuss the design criteria for such a structure which is multi-functional in the sense that it serves not only as microwave delivery but also as electrical top gate and shadow mask for the single quantum dot spectroscopy. We present test measurements on hydrogenated amorphous silicon, demonstrating electrically detected magnetic resonance using the in-plane component of the oscillating magnetic field created by the coplanar stripline antenna necessary due to the particular geometry of the quantum dot spectroscopy. From reference measurements using a commercial electron spin resonance setup in combination with finite element calculations simulating the field distribution in the structure, we obtain a magnetic field of 0.12 mT at the position where the quantum dots would be integrated into the device. The corresponding π-pulse time of ≈0.5 μs meets the requirements set by the high sensitivity optical spin read-out scheme developed for the quantum dot.
我们报告了一种共面带状线天线的开发与测试情况,该天线设计用于集成到磁光致发光实验中,以便对单个自组装半导体量子点中受限的单个电子自旋进行相干控制。我们讨论了这种多功能结构的设计标准,它不仅用作微波传输,还用作单量子点光谱的电顶栅和阴影掩膜。我们展示了在氢化非晶硅上的测试测量结果,利用共面带状线天线产生的振荡磁场的面内分量进行电检测磁共振,这是由于量子点光谱的特殊几何结构所必需的。通过使用商业电子自旋共振装置结合模拟结构中场分布的有限元计算进行参考测量,我们在量子点将集成到器件中的位置获得了0.12 mT的磁场。相应的π脉冲时间约为0.5 μs,满足了为量子点开发的高灵敏度光学自旋读出方案所设定的要求。